## Fabrics for circuit switching

$\checkmark$ What and why
$\checkmark$ Space switching
$\checkmark$ Time switching
$\checkmark$ Analogies
§ Space-to-space
§ Time-to-space
$\checkmark$ Two stage switch fabrics
§ TT
§ TS
§ ST
§ SS


## Goals of study of switch fabrics in this course

$\checkmark$ To understand how a switch fabric in an exchange works and what is its structure
$\checkmark$ To understand how a larger fabric can be constructed using smaller fabrics as building blocks.
$\checkmark$ To understand the technological limitations and the technology trend
$\checkmark$ "Basics of the system design of switch fabrics"
$\checkmark$ Learn to evaluate switch fabric technology
$\checkmark$ To understand the fundaments of modern packet switches

Narrow-band fabric switches PCM time slots
$\checkmark$ In PCM30 -frame tsl 0 differs in even and odd frames
, Even numbered frame has the frame alignment -> Time slots can be found in the received signal.
, Odd frame has management information

$\checkmark$ Voice channel bit rate is $64 \mathrm{kbit} / \mathrm{s}$ and PCM30 -frame total bit rate is $\mathbf{2 , 0 4 8} \mathbf{~ M b i t} / \mathrm{s}$
$\checkmark$ Prior to switching rate can be changed and serial signal can be converted into parallel ( 8 bits in parallel).


## In Telecom networks, exchanges and digital cross-connects are able to switch connections

$\checkmark$ A connection between two terminals can be
permanent
switched (dial-up connection)
$\checkmark$ A switched connection requires a mechanism that attaches the right information streams to each other
$\checkmark$ Switching takes place in the switching fabric, the structure of which depends on the mode of operation of the network, available technology and the required capacity.
$\checkmark$ We will look at two viewpoints: combinatorial and technological.

## Time and Space switching are basic functions of a switch fabric

$\checkmark$ Internally in exchanges often PCM 30 frames or their multiples are used.
$\checkmark$ PCM 30 frame is based on time division multiplexing, so a voice channel is in a constant place in time in the frame.
$\checkmark$ Two communicating terminals may use different PCM lines. So, voice channels are tied to space (place - point of attachment in the exchange)
$\checkmark$ This suggests that the signals need to switched both in time and in space.

## A Space Switch is a basic building block for a bigger fabric

$\checkmark$ A space switch is a cross-point matrix. By closing and opening the switches in the cross-points, information flow can be controlled (i.e. switched).


Each cross-point switch can be closed $\circ$ or open • Only one cross-point can be attached $\bullet$ to an output at any given time.

## A space switch setting is either cyclic or constant

$\checkmark$ Setting mode depends on the nature of the switched signals.
$\boldsymbol{\sim}$ If inputs are PCM30 connections, we need a cyclic setting that changes between the last bit of a time slot and the first bit of the immediately following time slot.
$\checkmark$ If inputs are $64 \mathrm{kbit} / \mathrm{s}$ voice channels, the setting can be constant. This is simpler but makes poor use of the modern hardware capability.

## Example implementation of a space stage



## Another example of a space switch

$\checkmark$ Nx1 -multiplexers implement a space switch

$\checkmark$ One output is attached to exactly one input at any given time. Each output always has some signal to carry in circuit switch, because the output is a circuit.

## A time switch interchanges or reorders the time slots

$\checkmark$ A time slot inter-changer is a memory that buffers an incoming PCM30 signal or its multiple.
$\checkmark$ The Frame is read out from the memory onto the outgoing connection based on the order given by the control logic



## Time switch: address write - serial read



## Properties of time switches

$\checkmark$ Incoming buffer is fed by the incoming circuit on the "wire" bit rate, outgoing buffer needs to feed the outgoing connection on "wire" bit rate - so, the former needs to be read out on the same speed and in a cycle, the latter needs to be written to on the same speed and in a cycle.
$\checkmark$ The number of time slots in a frame $=$ nrof read operations $=$ nrof write operations per frame in the switch memory -> speed of the switch memory is a critical parameter: available speed needs to be made full use of but the same speed determines switch capacity without parallelism.
$\checkmark$ It is a good idea of doing Serial-to-parallel and P/S -conversions in the frame buffers - otherwise switch memory speed requirement is multiplied by 8.
$\checkmark$ Control memory speed requirement is somewhat above half of the switch memory requirement to allow changing contents

## Time-Space analogy

$\checkmark$ A time switching PCM30 -switch can be logically converted into a space switch by converting the time slots into a parallel format.

$\checkmark$ This space switch can be imagined to reside between the incoming frame buffer and the outgoing frame buffer
$\checkmark$ Is this logical conversion fair?

## Space-space - analogy

A space switching PCM30 - switch fabric can be logically converted into a pure space switch (without cyclic control) by distributing each time slot into its own space switch.


To switch a time slot, it is
enough to control one of the boxes

## An example conversion



## Properties of space and time switches

## Space switches

$\checkmark$ The nrof cross-points (ANDgate) grows as:
nrof inputs $x$ nrof outputs
i.e. $\quad n^{2}$.
$\checkmark$ The output bitrate determines the speed requirement for the components .
$\checkmark$ Has bus structures both on input and output lines. Makes fault location difficult.

## Time switches

$\checkmark$ Size of switch and control memory grows:
$\mathrm{sm}+\mathrm{cm}=2 \times 2 \times$ nrof time slots
i.e. linearly until the available memory speed is enough.
$\checkmark$ A simple and cost efficient structure until memory speed is enough.
$\checkmark$ Memory speed determines the maximum capacity.

## A switching fabric can be constructed as a combination of space and time switches

$\checkmark$ The Fabric is a network of switches (that may contain cross-points.
$\checkmark$ Two-way information transfer through the switch requires two through connections in the switch fabric.
$\checkmark$ The fabric should introduce small probability of blocking or better be non-blocking.
$\boldsymbol{\nu}$ Non-blocking $=$ switching to a free output from any input is always possible.
$\checkmark$ Efficient multicast is nowadays a typical functional requirement. Multicast $=$ one input is copied to many outputs at the same time.

## Two stage switching fabric

$\checkmark$ Possible combinations of time and space switches are:
, Time-Time (TT)
, Time-Space (TS)
, Space-time (ST)
Space-Space (SS)
$\checkmark$ TT-fabric does not give any benefit compared to a single stage T -switch.
$\checkmark$ SS-switch is not a good idea, because blocking probability is high and no benefit is achieved.

## Space-time switching fabric

$\checkmark$ ST -switch gives high probability of blocking, because Space switching can create blocking on an arbitrary bus.
$\checkmark$ Some time slots from buses 1 and $\mathbf{N}$ are attempting to flow onto output bus nr 1 at the same time.


## Time- Space switching fabric

$\checkmark$ TS-fabric has low probability of blocking, because the time switch allows rearranging of time slots so that Space switching can be done without blocking.




## Rearranging the incoming time slots



An analogous SS -switch corresponding to a Time-Space switch


Space analogies of the time switches on the prev. slide

Multiplexed space switches from the previous slide

## A connection through a SS-switch



Coordinate (x,y,z)
$\left|\left.\right|_{\text {plane }} ^{\text {port (input of output) }}\right.$
stage

## Three stage switching fabrics

$\checkmark$ Three stage switching fabrics are made of three time and/or space switching stages connected back-to-back
$\checkmark$ Possible combinations are:
, Time-time-time (TTT) ( not significant, no connection from PCM to PCM)
, Time-time-Space (TTS) (=TS)
, Time-Space-Time (TST)
, Time-Space-Space (TSS)
, Space-Time-Time (STT) (=ST)
Space-Time-Space (STS)
Space-Space-Time (SST) (=ST)
Space-Space-Space (SSS) (not significant, high probability of blocking)
$\checkmark$ Three interesting new combinations TST, TSS and STS.

