Lower bound of Complexity using Connection functions

Copy -function,

 Self-routing fabrics
Summary of course scope

Total nrof thruconnections in a Fabric

Point-to-point connection function
$C=\{(i, o) \mid i \in I, o \in O\}$
$(i, o) \in C \mathrm{ja}(i, o) \in C \Rightarrow o=o^{\prime}$
$(i, o) \in C \mathrm{ja}\left(i^{\prime}, o\right) \in C \Rightarrow i=i^{\prime}$

One to many
$C=\left\{\left(i, n_{i}\right) \mid i \in I, n_{i} \subset O\right\}$
C - is a logical mapping from inputs to outputs.
C - a description of a connection of state of the Fabric

Nrof point-to-point thruconnections is N ! Let us visualize mappings C

$$
\mathbf{N}=\mathbf{2}
$$

$$
2!=2
$$

Construction of C: Enumerate inputs, mix them in an arbitrary order.

The impact of multi-point thruconnections?
Mapping C , when $\mathrm{N}=3$

etc...
In mapping C each input can freely choose its output $-->\mathbf{N}^{\mathrm{N}}$ elements in \mathbf{C} ! Such C is significantly larger than in case of pt-to-pt connections!

Combinatorial complexity of a Fabric

$\zeta(\mathbf{G})-\mathbf{L o g}_{2}$ of nrof distinct and legitimate \mathbf{C} realized by graph G.
R - \quad Nrof cross-points in the Fabric.
2^{R} - Nrof states in a Fabric with R cross-points.
Crude upper bound:
$\zeta \leq R$
More accurate upper bounds:

- remove all non-legitimate states, e.g. the ones in which two cross-points are feeding one output
- remove one of states for which another state produces the same C.

Growth of the Benes network

Nrof 2x2 switches $=N / 2$

BENES network

Nrof stages $=2 \log _{2} N-1$
Nrof cross-points is nrof-stages \times nrof-switches-in-a-stage $=$ $4 \times N / 2 \times\left(2 \log _{2} N-1\right) \approx 4 N \log _{2} N$

Lower bound of complexity of a fabric can be assessed using connection functions

\checkmark Assume that the fabric is $\mathbf{N x N}$ and that it provides full connectivity.
\checkmark Nrof $C=N$!
$\checkmark \zeta=\log _{2}(N!) \sim \operatorname{Nlog}_{2}(N)-1,44 N+1 / 2 \log _{2}(N)$
\checkmark Nrof 2×2 switches in a Benes network is
$(\mathbf{N} / 2)\left(\log _{2} \mathbf{N}-1\right)=\operatorname{Nlog}_{2}(\mathbf{N})-1 / 2 \mathbf{N} \sim \zeta$
= approximately the minimum nrof switches to implement N ! states.

Connection functions characterize the goal of a fabric
 C - a connection pattern

Pt-to-pt connection function

Point-to-point
$C=\{(i, o) \mid i \in I, o \in O\}$
$(i, o) \in C \mathrm{ja}(i, o) \in C \Rightarrow o=o^{\prime}$
$(i, o) \in C \mathrm{ja}\left(i^{\prime}, o\right) \in C \Rightarrow i=i^{\prime}$

Multicast -function

One to many
Goal: Count the total nrof thruconnections in a Fabric and consequently the lower bound of combinatorial complexity of the fabric.

Concentrator function

$C=\{(i, o) \mid i \in A \subset I, o \in O\}$
$(i, o) \in C \mathrm{ja}\left(i, o^{\prime}\right) \in C \Rightarrow o=o^{\prime}$
$(i, o) \in C \mathrm{ja}\left(i^{\prime}, o\right) \in C \Rightarrow i=i^{\prime}$

Copy function

$$
C=\left\{\left(i, n_{i}\right) \mid i \in I, \Sigma n_{i}=N\right\}
$$

The order and identity of outputs n_{i} are ignored (output unspecific).
NB: Copy function $=/=$ multicast $!!!$

Let us observe the nrof different C measured as $\boldsymbol{\zeta}$ realized by different connection functions

$\zeta_{\text {pt-pt-conn-function }}$	By definition we say that graph G is rearrangeably non-blocking, if it realizes $\zeta_{\text {multicast-function }}$ $\zeta_{\text {concentrator-function }}$$\quad$all connection patterns C.
It follows that by observing the nrof distinct C realized by different connection functions, we can find the lower bound of complexity for any rearrangeably non-blocking fabric.	
ORka/ML-k2001 \quad Telecommunications Switching Technology I	

Lower bound of complexity of the Point-to-ptconnection function

Pt-pt-connection function

One to one mapping
Each distinct i is mapped to exactly one o.

We need to implement the nrof distinct C equal to N !

Using Sterling's approximation:

$$
N!\approx \sqrt{2 \pi} N^{N+1 / 2} e^{-N}
$$

$$
=\sqrt{2 \pi} \exp _{2}\left(N \log _{2} N-N \log _{2} e+1 / 2 \log _{2} N\right)
$$

$\zeta_{\text {pt-pt }}=\log _{2} N!\approx N \log _{2} N-1.44 N+1 / 2 \log _{2} N$
NB: Nrof 2×2 switches in a Benes network is $N \log _{2} N-N / 2$, i.e. very close to this lower bound of $\zeta_{\text {pt-pt. }}$

Lower bound of complexity of the Multicast connection function

Multicast function

$C=\{(o, i) \mid i \in I, o \in O\}$

Each o can choose any i.

Each $o \in O$ is connected to some $i \in I$.

Lower bound of complexity of the Concentrator connection function

$$
C=\{i \mid i \in A, \text { nrof } i=N(<M)\}
$$ There are $\binom{M}{N}$ connection patterns C

$$
\zeta_{\text {connentrator }}=\log _{2} \frac{M!}{N!(M-N)!}
$$

$$
\zeta_{\text {connentrator }}=M H(c) \quad c=N / M
$$

$$
H(c)=-c \log _{2} c-(1-c) \log _{2}(1-c)
$$

$=>$ Theoretically, the complexity of a concentrator is a linear function of the nrof inputs. Practical solutions of this level of complexity are, however, unknown. Moreover, strict sense non-blocking concentrators are needed $=>$ M logM fabrics are used for concentration.

Creating copies using a binary network

\checkmark Copy function can be implemented using a distribution tree prior to network that rearranges the signals to the right outputs.
\checkmark Copy function needs the identity of the input and the nrof copies.
\checkmark Routing/copy decision in the network is based on the binary identities of outputs in the copy interval.

A distribution tree based on Banyan network

A Multicast fabric can be constructed recursively e.g. =Copy-swich + pt-to-pt switch

\checkmark Leads to an increase in the nrof stages, which may be undesirable.
\checkmark It is difficult to calculate a path thru a multi-stage fabric, controlling the fabric is also complicated.
\checkmark A way to solve the problem is self-routing.

Self-routing is based on Input/output addresses that tell also the path

Self-routing is a popular principle in fast packet switching.
Each packet has a header, that is used to find the path thru the fabric.
There are one or more paths from an input to an output.

Switch block
S_{1}

Self-routing address
$b_{\mathrm{K}} \ldots b_{1}$

n_{1} outputs
Self-routing address
$b_{\mathrm{K}} \ldots b_{2}$
n_{2} outputs

Switch block S_{2}

Self-routing address

n_{K} outputs
Switch block
$S_{\text {K }}$

We call the switch blocks nodes.
© Rka/ML -k2001 Telecommunications Switching Technology I

NlogN complexity unique route networks are variations of the Baseline network

Banyan network

Shuffle exchange (omega)

Baseline network

Flip network (inverse shuffle)

Self-routing shuffle network arcs are enumerated in a regular manner

$N=2^{n}$ inputs and 2^{n} outputs. Benes structure $=>$ Nrof stages $=n$ and Nrof 2×2 switches in each stage $=N / 2=2^{n-1}$.
2×2 switches in a stage are enumerated top to bottom $0 \ldots 2^{n-1}-1$. Enumeration requires $n-1$ bits.
The arcs between stages are enumerated top to bottom with n bits.

In the self-routing shuffle network, the number of target output is the self-routing address

Number of a node in stage $k=$ number of the arc - remove right most bit
Number of the node in stage $k+1=$ number of the arc - remove left most bit

Self routing example

arc 1

arc $2 \leftrightarrow \rightarrow$
© Rka/ML -k2001 Telecommunications Switching Technology I

Ratkaisun rajoitukset

\checkmark Banyan network is not non-blocking.

\checkmark It implements $\exp _{2}\left(1 / 2 N \log _{2} N\right)=\left(\mathrm{N}^{\mathrm{N}}\right)^{1 / 2}$ connection pattern.
\checkmark This is less than the required $\mathrm{N}!\approx \exp _{2}\left(N \log _{2} N\right)$.
=>
\checkmark The nrof arcs between nodes can be increased, or
\checkmark Shuffle can be replicated like in the Cantor network, or
\checkmark Two shuffle network can be concatenated (cmp BENES network).
\checkmark Also buffering in intermediate nodes can be used.
\checkmark Simpler to use a stright switch matrix whenever possible.

Broadband (Terabit-) IP routers need a self-routing switch fabric

\checkmark Wire speeds can reach tens...hundreds of Gbit/s. Processing electronically requires splitting the input into many. Total nrof input can become large (thousands).
\checkmark Simply connectivity from all inputs to all outputs requires a switch fabric.

- A Switch fabric is the only feasible solution when the total switching speed grows so high that no bus structure is fast enough to carry that load or when a scalable solution is needed.
\checkmark A Self routing fabric is the only well functioning solution, because a different thruconnection is needed for each IPpacket. No centralized control would be fast enough and scalable enough!

