IP Telephony

Overview of IP Telephony Quality of Service H.323 RTP, RTCP (not covered in class)

Raimo Kantola

tvt 1 - k1999

18 - 1

Data traffic will dominate voice in volume. Therefore Data will drive the Network Architecture.

- Broadband Networks will be based on packet switching
- BB network emerges from the existing Internet
- Each step of Development pays for itself.

IP Telephony Standardization is active on de-jure and de-facto fora

- ITU-T H.3xx, H.2xx series
- ETSI TIPHON project Telecommunications and Internet Protocol Harmonisation over Networks
- IPTEL and PINT WGs of the IETF
- MMUSIC WG of the IETF (Multiparty Multimedia Session Control)
- VOIP Voice over IP by IMTC - Int'l Multimedia Teleconferencing Consortium

H.323 products are available

- ITSPs are strongly committed to H.323
- MS Netmeeting, Intel Videophone, Netscape Conference are examples of H.323 clients
- H.323 version 2 products are emerging
- Gateways and Gatekeepers/Call managers are available

IETF alternatives to H.323 pursue Integration of Telephony to the Web

- PINT works on Click-to-Dial, Click-to-Fax, Click-to-Fax-Back "wwwbuttons". The idea is to integrate www to IN
- MMusic work on SIP idea is to use web-technology to absorb signaling.
- CTI Simple Computer-Telephony-Protocol is based on similar ideas as SIP.

Raimo Kantola

IP Voice in Ethernet - Delay is in the Workstation (IPANA -97)

tvt 1 - k1999

18 - 7

Packet spacing difference in a campus network

• In the public Internet lack of bandwidth, congested routes/links and underdeveloped charging are blockers to IP Voice.

tvt 1 - k1999

18 - 9

Delay breakdown in a Nevot SunOS Workstation

- End to end delays of 30...40 ms in a campus intranet are achievable (IPANA -98).
- A buffering bug caused most of the 100ms in previous slide.
- Processing delay is 1 10% of CPU time depending on the coder.

H.323 is the key standard for packet based multimedia communication

H.323 over: LANs, Enterprise Area Networks, MANs, Intranets, Internets

include dial-up connections and PP-connections over GSTN/ISDN with PPP packet transport.

Example networks:

- Ethernet (IEEE 802.3)
- Fast Ethernet (IEEE 802.3u)
- FDDI
- Token ring (IEEE 802.5)
- ATM

MM includes:

- Audio (mandatory)
- Video (opt)
- Data (opt)

Communication = conference or two party call.

Kantola

tvt 1 - k1999

H.323 uses H.225.0, H.245 and RTP

Note: this is an example configuration!

H.323 supports many call modes

- Directly between two H.323 endpoints (no GK)
- Between two H.323 endpoints using a GK

• Many conference types

- ad hoc multipoint conference (start with 2-party call expand to conf)
- broadcast conference (one sender, many receivers)
- broadcast panel conference (mp conf + bc conf)
- centralized multipoint conference (trms pp to MCU, MP sends to trms)
- decentralized multipoint conference (no MCU all to all coms)
- hybrid multipoint conference centralized audio or video
- mixed multipoint conference (mix of decentralized + centralized modes)

Raimo	Kantola

tvt 1 - k1999

18 - 13

Mixed multipoint conference example

H.323 zone is controlled by a Gatekeeper

- Zone has at least one terminal, MCUs and GWs are optional.
- Zone has one and only one GK.
- Gatekeeper controls access to the network for Ts, GWs and MCUs and provides
 - address translation
 - gateway location
 - bandwidth management

tvt 1 - k1999

18 - 15

H.323 terminal equipment

H.323 supports many parallel addressing methods

- H.323 entity shall have at least one Network Address (e.g. IP address)
- TSAP identifiers allow multiplexing several channels sharing one Network Address map to port numbers
- An endpoint may have one or many Alias addresses may represent the Ep or a Conference that the Ep is hosting. Include: E.164 numbers, H.323 IDs (e.g. John Smith), e-mail addresses. Aliases are unique in a zone.

Raimo Kantola	tvt 1 - k1999	18 - 17

Gateway translates between transmission formats, communication procedures and media formats

- Example: H.225.0 to and from H.221 (transm.f)
- H.245 to and from H.242 (comm procedure)
- Media format: Audio, video, data
- Represents characteristics of network endpoint to GSTN endpoint and the reverse. May also work as an MCU
- Can also do call set-up and clearing

GK provides call control services, when present, shall do:

- Address translation (e.g. alias to transport address using DNS + E.164 to transport address)
 - uses the translation table produced from registration messages
- Admission control: ARQ/ACF/ARJ of H.225.0
 - based on call authorization, bandwidth, other criteria
- Zone management

Raimo Kantola

tvt 1 - k1999

18 - 19

GK may optionally do

- Call control signalling. May also direct the endpoints to setup call signalling channel between themselves
- Call Authorization using H.225.0 signalling
- Bwidth management controls the number of simultaneous calls in the zone
- Call management keep list of calls -> busy conditions
- GK management, Directory service etc FFStudy

Endpoint can discover a Gatekeeper automatically

- Automatic discovery eases maintenance of individual terminals
- Terminals may also have the GK id configured

RAS signalling function

- Performs
 - Registration of endpoints, Admission of calls, Bandwidth changes for calls
 - Status
 - Disengage of endpoints.
- Uses RAS signalling channel =/= call signalling channel and H.245 control channel. GKs have a well def. TSAP id for RAS sig. channel
- Endpoint=H.323 terminal or GW or MCU (is callable)

Endpoints register using GK's RAS Channel Transport Address prior to any calls are made

Ep

RRQ(Registration rq([alias, transport address, ...]

RCF[access token]/RRJ

- Security policy may require that registration has time-to-live and has to be repeated from time to time
- Endpoint or GK may unregister using the URQ message
- The GK maintains an alias to Network Address translation table.
- Access token may be used later in call setup

Raimo Kantola

tvt 1 - k1999

18 - 23

GK

GK

Call Admission sets the upper limit for the aggregate bitrate of the call

Ep

ARQ (admission rq) [Requested Σ call bandwidth:: payload only]

ACF [may reduce BW, use direct or GK sig]/ARJ

Call

BRQ (Bw Change rq)

Call signalling uses H.225.0

Endpoint

H.225.0 call signalling

Ep|GK

- Call signalling= call setup, request changes in Bw of a call, get status of Ep, disconnect call
- Call signalling is largely inherited from ISDN
- Call Signalling Channel is opened prior to H.245 procedures and prior to any other logical channels between endpoints. Eps have a well known TSAP id for the Call Sig. Channel and a well-known Discovery Multicast address.

Raimo Kantola

tvt 1 - k1999

18 - 25

H.323 Call Signalling Channel Routing

- ACF has the Transport Address of the Call Signalling Channel
- The address is either a GK address or an Endpoint address.

H.245 Control Channel Routing

The goal of call signalling is the setup/release of H.245 Control Channel!

H.245 carries end-to-end control messages between H.323 entities

- Master/slave determination for conflict resolution
- Capability Exchange (e.g. what codecs are supported)
- Logical Channel Signalling (bounds media type, algorithm etc. to ports)
- Bidirectional Logical Channel Signalling
- Close Logical Channel Signalling
- Mode Request (conference modes)
- Round Trip Delay Determination
- Maintenance Loop Signalling
- H.323 also uses flowControlCommand of H.245 to limit bandwidth

Sample H.245 Logical Ch Signalling for two way RTP+RTCP communications setup

In IP networks a logical channel corresponds to an IP port number
Uses H.245 Control Channel

Raimo Kantola

tvt 1 - k1999

18 - 29

H.323 Call identification uses

- *Call reference value* between two H.323 entities on a signalling channel (one for call signalling and another for RAS channel
- Call ID a globally unique non-zero value created by the calling endpoint passed in all H.225 msges
- Conference ID (CID) in all sub-calls of a conference

H.323 summary

- H.323 inherits call signalling from ISDN
- H.323 has many conference modes and many signalling and call routing options
- Call setup delay is reduced by using the Fast Connect Procedure: packs all setup info from both H.225.0 and H.245 into fastStart element in *setup* and *connect* (call proceeding, alerting) messages

Real time Services in IP

RTP RTCP Telephony over IP

Raimo Kantola

tvt 1 - k1999

18 - 33

TCP is not suitable for real time services

Applications include

- Audio and video conferencing
- Shared workspaces
- Telephony
- Games
- Remote medicine
- ...

- TCP is point-to-point not suitable for multicast
- TCP has retransmission for lost segments --> out of order delivery
- No mechanism for associating timing info with segments

Variable delay has to be compensated at reception by delay buffer

Packet arrival process is characterised by delay jitter and packet spacing difference

Delay jitter = Maximum variance in packet delay in a session

Example: fastest packet arrive in 1 ms slowest arrive in 8 ms. Delay jitter is 7 ms.

Packet spacing difference is measured based on receiver clock only:

Spacing difference = $[(t_i - t_{i-1}) - (t_j - t_{j-1})]$

Soft real time communications tolerate some loss but need the following

- Low jitter and Low latency
- Ability to integrate real-time and non-real-time services
- Adaptability to changing network and traffic conditions
- Performance for large networks and large nrof connections
- Modest buffering requirements in the network
- Effective capacity utilisation
- Low processing overhead per packet

Raimo Kantola	tvt 1 - k1999	18 - 37
RTP -	Real time protocol is r" library on top of U	a DP
MPEG		
	H.261	
RTP UDP	• RTP leaves recovery from the application	loss to

- Instead of retransmission e.g. more compact coding may be chosen
- RTP provides sequencing

IP

Network Access

RTP supports the transfer of real time data among participants of a session

- Session is defined by
 - RTP port number (dest port in UDP header of all receivers
 - RTCP Real time control protocol port number
 - Participant IP addresses multicast address or a set of unicast addresses
- For session set-up e.g H.323 or SIP Session Initiation Protocol can be used

Kantola

```
tvt 1 - k1999
```

18 - 39

RTP transport model includes sources, relays and receivers

- A mixer will combine sources e.g. add voice signals from all conference participants
- A translator may translate from one video format to another
- The relay will mark itself as the synchronisation source

RTP header

	0 4	89	16		31
V=2 =	VPX	CC M	Payload type	Sequence num	ber
version			Timesta	amp	
,	Synchronisation source (SSRC) identifier				
		Contri	ibuting source ((CSRC) identifier	
		Contr	ibuting source ((CSRC) identifier	

P - Padding - indicates that last octet of payload = nrof preceeding padding octets

X - Extension - there is an experimental extension header

CC - CSRC count - Nrof CSRC identifiers following the fixed header

M - Marker - e.g. End of video frame, Beginning of talk spurt

Payload type - format of RTP payload.

Seq. nr - each source starts at a random nr and =+1 for each packet - determines order of packets with the same timestamp

Timestamp - value of local clock at source at generation of first octet of payload SSRC and CSRC identifiers are generated at random

Raimo Kantola

tvt 1 - k1999

18 - 41

RTCP - RTP Control Protocol provides feedback among participants of the session

SDES - Source Description

	RR - Receiver report [loss, excessive jitter]	
Source	SR - Sender report [data rates, quality of transm]	Destination
	BYE	

- RTCP packets may be multicast in parallel to RTP using another UDP port
- RTCP source is identified by plain text
- Few participants: RTCP reports are sent once in 5s Rate of reports is reduced to max 5% of session traffic if there are more participants

RTCP fixed header is

V = 2 = version, P - Padding, same as RTP

RC - Reception report block count in SR or RR

SC - Source item count in SDES or BYE

PT - RTCP packet type [RR, SR, SDES, BYE]

Length - lenght of this packet in 32 bit words - 1

SSRC - same as in RTP

Raimo Kantola

tvt 1 - k1999

18 - 43

Sender Report carries sender info and reception report blocks

Sender information is

NTP timestamp (MS word)	NTP is the wallclock time when sending this report
NTP timestamp (LS word)	(used for round-trip time measurement)
RTP timestamp	RTP timestamp let relate this report to RTP stream
Sender's packet count	Packet and octet counts run from beginning of session
Sender's octet count	
	SSPC identifies source

ort	SSRC	C_i (SSRC of source)
Reception rep block	Fraction lost	Cum nrof packets lost
	Ext hi	ghest seq nr received
	I	nterarrival jitter
	Time	of last sender report
	Delav s	ince last sender report

RC identifies source

Fraction lost since last SR or RR, Cum loss is for the whole session

16 LS bits= highest RTP seq nr. 16 MS bits=nrof times seq nr has wrapped back to zero

Average interarrival jitter for a source is estimated as follows

S(i) = Timestamp from RTP datapacket *i* R(i) = Time of arrival of datapacket *i* in RTP timestamp units D(i) = (R(i) - R(i - 1)) - (S(i) - S(i - 1))J(i) = Estimate of Interarrival jitter up to the receipt of RTP packet *i*

J(i) = 15/16 * J(i-1) + 1/16 * | D(i) |

- Receivers use the estimate of Jitter to adjust the playout delay
- According to measurements the above exponential average is not always optimal

```
tvt 1 - k1999
```

18 - 45

RTCP other packets

- RR are made of the fixed header + reception report blocks
- SDES can carry
 - CNAME Canonical Name
 - NAME Real user name of the source
 - Email address of the source
 - Phone number of the source
 - TOOL name of the tool used by the source