
Helsinki University of Technology

Department of Electrical and Communication Engineering

S-38.180 Quality of Service in Internet

Home assignment 1: Simulation of

Rate Control mechanisms

Due date: 31.10.2001 at 1200 hours
Delivery: Paper report to course locker at G-wing 2nd �oor

Contents

Contents i

1 Introduction 1

1.1 Network Simulator 2 . 2

2 Simulator code 3

2.1 Create topology . 8
2.1.1 Nodes . 9
2.1.2 Links . 11
2.1.3 Building Di�erentiated Services 13

2.2 Probing the information . 14
2.2.1 Starting event monitoring 15
2.2.2 Trace �le format . 15

2.3 Controlling simulation . 16

3 Exercise 19

i

Chapter 1

Introduction

This is course work for course S-38.180 Quality of Service in Internet. This
exercise makes you familiar with:

1. ns2. A network simulator which is one of the most used simulation tools
in academic world.

2. Rate control mechanisms which could be used to mark, limit or shape
the Internet tra�c

Tool is installed into department workstation room into SUN worksta-
tions. You need to run it there. Program can be located from path
/proj/bones/ns2/. To be able to use it you must �rst run command
/proj/bones/ns2/ns-allinone-2.1b8/use, which tells you the format of en-
vironment speci�c use command. Typing the command outputted by generic
use, you will set all environment variables required to run ns2.

Make working directory into your home directory and copy �le
/proj/bones/ns2/ns-allinone-2.1b8/work/example.tcl to it. This �le is the
core which you must modify during the work.

Department has set quotas to workstations, so you have to run your simula-
tions in /tmp directory of workstations. Make temporary working directory
under /tmp. Copy processed results to your working directory and delete
temporary working directory.

1

CHAPTER 1. INTRODUCTION

1.1 Network Simulator 2

Tool used in this exercise is network simulator 2. It is freely availabale and
distributable object oriented simulator. In glance, it contains kernel code
developed in C++. This kernel code contains class hierarchies for ready
made building blocks. These building blocks are translated to Otcl to make
construction of 'quick and dirty' simulations easier.

You may want to become familiar with the tool
before starting your work. ns2 homepage is in
http://www.isi.edu/nsnam/ns/index.html. Recomendend reading is the
tutorial page in http://www.isi.edu/nsnam/ns/tutorial/index.html.

2

Chapter 2

Simulator code

This chapter present simulator code which is used in this exercise. Following
listing shows whole code as one unit. To become familiar the structure of ns,
we dissect code into peaces and explain what they do in detail.

set ns [new Simulator]

set rate1 2000000
set cir1 1500000

set rate2 2000000
set cir2 1500000

set cir3 1500000

set cir4 1500000

set cir5 1000000

set cir6 1000000

set cir7 1000000

set cir8 1000000

set cir9 0

set cir10 0

set testTime 50
set packetSize 1000

Open a file for writing the trace data
set trace_all [open out.all w]

Trace all events for post processing with animator (nam) or with any
other software
$ns trace-all $trace_all

3

CHAPTER 2. SIMULATOR CODE

Set up the network topology shown at the top of this file:
set s1 [$ns node]
set s2 [$ns node]
set s3 [$ns node]
set s4 [$ns node]
set s5 [$ns node]
set s6 [$ns node]
set s7 [$ns node]
set s8 [$ns node]
set s9 [$ns node]
set s10 [$ns node]
set e1 [$ns node]
set e2 [$ns node]
set dest [$ns node]

$ns duplex-link $s1 $e1 10Mb 5ms DropTail
$ns duplex-link $s2 $e1 10Mb 5ms DropTail
$ns duplex-link $s3 $e1 10Mb 5ms DropTail
$ns duplex-link $s4 $e1 10Mb 5ms DropTail
$ns duplex-link $s5 $e1 10Mb 5ms DropTail
$ns duplex-link $s6 $e1 10Mb 5ms DropTail
$ns duplex-link $s7 $e1 10Mb 5ms DropTail
$ns duplex-link $s8 $e1 10Mb 5ms DropTail
$ns duplex-link $s9 $e1 10Mb 5ms DropTail
$ns duplex-link $s10 $e1 10Mb 5ms DropTail

$ns simplex-link $e1 $e2 10Mb 5ms dsRED/edge
$ns simplex-link $e2 $e1 10Mb 5ms dsRED/edge

$ns duplex-link $e2 $dest 10Mb 5ms DropTail

$ns duplex-link-op $e1 $e2 orient right
$ns duplex-link-op $e2 $dest orient right

set qE1E2 [[$ns link $e1 $e2] queue]
set qE2E1 [[$ns link $e2 $e1] queue]

Set DS RED parameters from Edge1 to Core:
$qE1E2 meanPktSize $packetSize
$qE1E2 set numQueues_ 2
$qE1E2 setNumPrec 2
$qE1E2 addPolicyEntry [$s1 id] [$dest id] TSW2CM 20 $cir1
$qE1E2 addPolicyEntry [$s2 id] [$dest id] TSW2CM 20 $cir2
$qE1E2 addPolicyEntry [$s3 id] [$dest id] TSW2CM 10 $cir3
$qE1E2 addPolicyEntry [$s4 id] [$dest id] TSW2CM 10 $cir4
$qE1E2 addPolicyEntry [$s5 id] [$dest id] TSW2CM 10 $cir5
$qE1E2 addPolicyEntry [$s6 id] [$dest id] TSW2CM 10 $cir6
$qE1E2 addPolicyEntry [$s7 id] [$dest id] TSW2CM 10 $cir7
$qE1E2 addPolicyEntry [$s8 id] [$dest id] TSW2CM 10 $cir8

4

$qE1E2 addPolicyEntry [$s9 id] [$dest id] TSW2CM 10 $cir9
$qE1E2 addPolicyEntry [$s10 id] [$dest id] TSW2CM 10 $cir10
$qE1E2 addPolicerEntry TSW2CM 10 11
$qE1E2 addPolicerEntry TSW2CM 20 21
$qE1E2 addPHBEntry 10 0 0
$qE1E2 addPHBEntry 11 0 1
$qE1E2 addPHBEntry 20 0 0
$qE1E2 addPHBEntry 21 1 1
$qE1E2 configQ 0 0 10 40 0.02
$qE1E2 configQ 0 1 10 40 0.10
$qE1E2 configQ 1 1 0 0 1

Set DS RED parameters from Edge2 to Core:
$qE2E1 meanPktSize $packetSize
$qE2E1 set numQueues_ 2
$qE2E1 setNumPrec 2
$qE2E1 addPolicyEntry [$dest id] [$s1 id] TSW2CM 20 $cir1
$qE2E1 addPolicyEntry [$dest id] [$s2 id] TSW2CM 20 $cir2
$qE2E1 addPolicyEntry [$dest id] [$s3 id] TSW2CM 10 $cir3
$qE2E1 addPolicyEntry [$dest id] [$s4 id] TSW2CM 10 $cir4
$qE2E1 addPolicyEntry [$dest id] [$s5 id] TSW2CM 10 $cir5
$qE2E1 addPolicyEntry [$dest id] [$s6 id] TSW2CM 10 $cir6
$qE2E1 addPolicyEntry [$dest id] [$s7 id] TSW2CM 10 $cir7
$qE2E1 addPolicyEntry [$dest id] [$s8 id] TSW2CM 10 $cir8
$qE2E1 addPolicyEntry [$dest id] [$s9 id] TSW2CM 10 $cir9
$qE2E1 addPolicyEntry [$dest id] [$s10 id] TSW2CM 10 $cir10
$qE2E1 addPolicerEntry TSW2CM 10 11
$qE2E1 addPolicerEntry TSW2CM 20 21
$qE2E1 addPHBEntry 10 0 0
$qE2E1 addPHBEntry 11 0 1
$qE2E1 addPHBEntry 20 0 0
$qE2E1 addPHBEntry 21 1 1
$qE2E1 configQ 0 0 10 40 0.02
$qE2E1 configQ 0 1 10 40 0.10
$qE2E1 configQ 1 1 0 0 1

Set up one CBR connection between each source and the destination:
set udp1 [new Agent/UDP]
$ns attach-agent $s1 $udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 attach-agent $udp1
$cbr1 set packet_size_ $packetSize
$udp1 set packetSize_ $packetSize
$cbr1 set rate_ $rate1
set null1 [new Agent/Null]
$ns attach-agent $dest $null1
$ns connect $udp1 $null1

set udp2 [new Agent/UDP]

5

CHAPTER 2. SIMULATOR CODE

$ns attach-agent $s2 $udp2
set cbr2 [new Application/Traffic/CBR]
$cbr2 attach-agent $udp2
$cbr2 set packet_size_ $packetSize
$udp2 set packetSize_ $packetSize
$cbr2 set rate_ $rate2
set null2 [new Agent/Null]
$ns attach-agent $dest $null2
$ns connect $udp2 $null2

set tcp3 [new Agent/TCP]
$ns attach-agent $s3 $tcp3
set ftp3 [new Application/FTP]
$ftp3 attach-agent $tcp3
$tcp3 set packetSize_ $packetSize
set sink3 [new Agent/TCPSink]
$ns attach-agent $dest $sink3
$ns connect $tcp3 $sink3

set tcp4 [new Agent/TCP]
$ns attach-agent $s4 $tcp4
set ftp4 [new Application/FTP]
$ftp4 attach-agent $tcp4
$tcp4 set packetSize_ $packetSize
set sink4 [new Agent/TCPSink]
$ns attach-agent $dest $sink4
$ns connect $tcp4 $sink4

set tcp5 [new Agent/TCP]
$ns attach-agent $s5 $tcp5
set ftp5 [new Application/FTP]
$ftp5 attach-agent $tcp5
$tcp5 set packetSize_ $packetSize
set sink5 [new Agent/TCPSink]
$ns attach-agent $dest $sink5
$ns connect $tcp5 $sink5

set tcp6 [new Agent/TCP]
$ns attach-agent $s6 $tcp6
set ftp6 [new Application/FTP]
$ftp6 attach-agent $tcp6
$tcp6 set packetSize_ $packetSize
set sink6 [new Agent/TCPSink]
$ns attach-agent $dest $sink6
$ns connect $tcp6 $sink6

set tcp7 [new Agent/TCP]
$ns attach-agent $s7 $tcp7

6

set ftp7 [new Application/FTP]
$ftp7 attach-agent $tcp7
$tcp7 set packetSize_ $packetSize
set sink7 [new Agent/TCPSink]
$ns attach-agent $dest $sink7
$ns connect $tcp7 $sink7

set tcp8 [new Agent/TCP]
$ns attach-agent $s8 $tcp8
set ftp8 [new Application/FTP]
$ftp8 attach-agent $tcp8
$tcp8 set packetSize_ $packetSize
set sink8 [new Agent/TCPSink]
$ns attach-agent $dest $sink8
$ns connect $tcp8 $sink8

set tcp9 [new Agent/TCP]
$ns attach-agent $s9 $tcp9
set ftp9 [new Application/FTP]
$ftp9 attach-agent $tcp9
$tcp9 set packetSize_ $packetSize
set sink9 [new Agent/TCPSink]
$ns attach-agent $dest $sink9
$ns connect $tcp9 $sink9

set tcp10 [new Agent/TCP]
$ns attach-agent $s10 $tcp10
set ftp10 [new Application/FTP]
$ftp10 attach-agent $tcp10
$tcp10 set packetSize_ $packetSize
set sink10 [new Agent/TCPSink]
$ns attach-agent $dest $sink10
$ns connect $tcp10 $sink10

proc finish {} {
global ns trace_all
close $trace_all

#Following are awk scripts to process trace of all events.

exec awk {
{

if (($1 == "r") && ($4 == "12"))

print $2, $9, $6
}

} out.all > out.rec

7

CHAPTER 2. SIMULATOR CODE

exit 0
}

$qE1E2 printPolicyTable
$qE1E2 printPolicerTable

$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"
$ns at 0.0 "$ftp6 start"
$ns at 0.0 "$ftp7 start"
$ns at 0.0 "$ftp8 start"
$ns at 0.0 "$ftp9 start"
$ns at 0.0 "$ftp10 start"
$ns at 10.0 "$qE1E2 printStats"
$ns at 20.0 "$qE1E2 printStats"
$ns at 30.0 "$qE1E2 printStats"
$ns at 40.0 "$qE1E2 printStats"
$ns at $testTime "$cbr1 stop"
$ns at $testTime "$cbr2 stop"
$ns at $testTime "$ftp3 stop"
$ns at $testTime "$ftp4 stop"
$ns at $testTime "$ftp5 stop"
$ns at $testTime "$ftp6 stop"
$ns at $testTime "$ftp7 stop"
$ns at $testTime "$ftp8 stop"
$ns at $testTime "$ftp9 stop"
$ns at $testTime "$ftp10 stop"
$ns at [expr $testTime + 1.0] "finish"

$ns run

2.1 Create topology

Topology in ns is based on collection of nodes and links. Topology is ba-
sic requirement for the succesful simulation of particular scenario. Therefore
topology is so called base requirement and components od topology are de-
�ned in base level of ns. This is easily detectable with the declarations which
start by $ns.

8

2.1. CREATE TOPOLOGY

E2E1

S1
S2

S3

S4

S5

S6

S7

S8

S9
S10

Dest

Figure 2.1: Topology of simulation

2.1.1 Nodes

There is no di�erentiation between end systems and routers in creation of
topology, i.e. each node can be end system and/or router.

Node is created with command set s1 [$ns node]

s1 is the name for the node which is later on used as pointer to the node. [$ns
node] tells to the ns that properties of class node should be assigned to new
object named s1. When node is an end system, we must add protocols and
tra�c generation models to it. In our exercise we have two types of clients.

1. Tra�c sources

Tra�c sources use UDP and TCP as their transport protocol. Protocol
for the end system is created with commands

--><--
set udp1 [new Agent/UDP]
$ns attach-agent $s1 $udp1
set cbr1 [new Application/Traffic/CBR]
$cbr1 attach-agent $udp1
$cbr1 set packet_size_ $packetSize
$udp1 set packetSize_ $packetSize
$cbr1 set rate_ $rate1
--><--

--><--
set tcp10 [new Agent/TCP]

9

CHAPTER 2. SIMULATOR CODE

Node
ent r y

Addr ess
Cl ass i f i er

Por t
Cl ass i f i er

Agent

Agent

Agent

Li nk Li nk Li nk

Onl y i n end sys t em

Figure 2.2: Construction of node in ns2

$ns attach-agent $s10 $tcp10
set ftp10 [new Application/FTP]
$ftp10 attach-agent $tcp10
$tcp10 set packetSize_ $packetSize
--><--

Where udp1 and tcp10 are the names for the protocol stacks. These
names are used for combining right node and source model to these
protocol stacks. [new Agent/UDP] and [new Agent/TCP] are used to
tell for ns to combine properties of class UDP and class TCP to new
objects named udp1 and tcp10. These classes inherit all features of
their parents, i.e. Agent.

Protocol stack is attached to particular node with the command $ns

attach-agent $s1 $udp1. Which combines node $s1 to protocol stack
$udp1 and node $s10 to protocol stack $tcp10 respectively.

Source type, i.e. tra�c generation pattern, is set by de�ning the client.

UDP protocol is attached to application which generates constant bit
rate tra�c. This is done �rst by de�ning the application set cbr1

[new Application/Traffic/CBR] and then attaching the application
to the transport protocol $cbr1 attach-agent $udp1. $cbr1 inherits
all features of Application, Tra�c and CBR. One of the features is that

10

2.1. CREATE TOPOLOGY

CBR tra�c is de�ned by rate and packet size. These are de�ned by
$cbr1 set rate_ and $cbr1 set packet_size_. They are connected
to locally modi�able variables located at the beginning of tcl script.

TCP protocol is attached to FTP application. Client name is ftp10 and
its operation is de�ned in class class Application/FTP. FTP without
any additional parametrisation is a greedy tra�c source, i.e. it tries to
�ll the pipe full of its tra�c.

2. Tra�c sinks

Tra�c sinks are points where the �ow of information are terminated.
There are several di�erent types of sinks for di�erent stacks and proto-
col levels. We are not interested in the operation of TCP and UDP, so
we will terminate information �ows without any processing. We create
a TCP sink which is de�ned by class Agent/TCPSink and name it as
sink10. This sink then attached to the node dest. Sameway we create
UDP sink which is de�ned by class Agent/Null and attach that to same
destination node dest.

Clients are connected together (after the links are declared) with the com-
mand

--><--
$ns connect $udp1 $null1
$ns connect $tcp10 $sink10
--><--

This command connects clients at the level of transmission protocol together,
i.e. state is established on the TCP.

2.1.2 Links

Links are the other part of topology. Because nodes are universal, i.e. end
systems and routers share same construction, additional mechanisms are im-
plemented into the links. Links contain queues which in real world would
have been implemented in routers.

Links are created with command

--><--
$ns duplex-link $s1 $e1 10Mb 5ms DropTail
$ns simplex-link $e1 $e2 10Mb 5ms dsRED/edge
--><--

11

CHAPTER 2. SIMULATOR CODE

Li nk
ent r y

Queue Del ay Err or

Figure 2.3: Construction of link in ns2

First parameter, duplex-link in command expresses the type of link. This
type may vary depending on what you are doing from simplex, duplex or
some special link, like CBQLink or IntServLink. We use in our exercise duplex
link to carry the data from source to access point and simplex links in core
network.

Second and third parameters refer from where to where link goes. End points
are nodes which are attached to the link, i.e. example shows link going from
s1 to e1. Ordering of end points does not account when we are talking about
duplex links. However, simplex links are directed based on the order of end
points.

Fourth parameter is the bandwidth (data rate) of the link. You may use
quali�ers k (kilo) and M (mega) as b (bit) and B (byte).

Fifth parameter is the delay of the link this has same idea as bandwidth you
may use m (milli) and u (mikro) as quali�ers.

Last parameter stands for queue management algorithm used in the queue.
Valid arguments are DropTail (FIFO), RED, dsRED/edge, dsREDcore,
CBQ, FQ, SFQ and DRR. We use DropTail everywhere else but at the core
network to have most straight forward simulation.

For visualisation in nam ns contains possibility to adjust topology on a way
you want. This is done with command

$ns duplex-link-op $s1 $e1 orient right-down

which makes possible to give orientational directions of links. Orientation is
in direction of from to to. Distance between two nodes comes from the delay.
All distances are scaled based on the shortest distance.

Additional parameters for the link can be given with same command
simplex-link-op. In command

12

2.1. CREATE TOPOLOGY

$ns simplex-link-op $e1 $e2 queuePos 0.5

queue on link between e1 and e2 is monitored in nam visualisation.

2.1.3 Building Di�erentiated Services

Di�erentiated Services support in ns2 is based on the modi�ed RED queue
(one physical queue contains three virtual queues). Di�erent RED parameters
are used for di�erent virtual queues, causing some virtual queue to have
lenient operation while other are more strained.

Base of the Di�Serv operation is the policy which is set for the simulation.
Policy declares how particular connection should be metered, marked or po-
liced during the simulation.

--><--
$qE2E1 addPolicyEntry [$dest id] [$s1 id] TSW2CM 20 $cir1
$qE2E1 addPolicyEntry [$dest id] [$s10 id] TSW2CM 10 $cir10
--><--

These policies de�ne connection which is under the control i.e. from $dest

to $s1 and $a10. Also the type of metering and marking is de�ned TSW2CM

which stands for Time Sliding Window Metering with Two Color Marking.
Two Color marking means simply in or out of pro�le marking. Last two
colums in policy entry de�ne the codepoint in case if packet falls within
policy and parameter used to set up metering and marking.

ns2 has build in support for following metering and marking combinations:

1. TSW2CM: Time Sliding Window Meter with Two Color Marker.
TSW2CM is controlled with single parameter Committed Information
Rate (CIR). CIR is the rate for which ISP o�ers QoS level commit-
ment. Tra�c falling out of pro�le is probabilistally marked to lower
precedence.

2. TSW3CM: Time Sliding Window Meter with Three Color Marker.
TSW3CM is controlled with two parameters Committed Information
Rate (CIR) and Peak Information Rate (PIR). CIR is the rate for which
ISP o�ers QoS level commitment. Tra�c falling out of CIR is proba-
bilistally marked to medium precedence. Tra�c falling out of PIR is
probabilistally marked to lowest precedence.

13

CHAPTER 2. SIMULATOR CODE

3. tokenBucket: Token Bucket uses CIR and committed burst size (CBS)
with two drop precedences. Packet is marked to lower precedence if it
falls out of pro�le de�ned by CIR (token generation rate * token size)
and CBS (size of the token bucket).

4. srTCM: Single Rate Three Color Marker uses combination of two token
buckets in cascade. Tra�c is metered by CIR, CBS and excess burst size
(EBS). Excess burst size is addtional burst level de�ned by second token
bucket. Tra�c falling in �rst bucket is marked to highest precedence.
Tra�c falling within second but not �rst token bucket is marked for
medium drop precedence. Tra�c falling out from both of the buckets
is marked to lowest precedence.

5. trTCM: Two Rate Three Color Marker uses a combination of two token
bucket in cascade. Tra�c is metered by CIR and CBS in �rst token
bucket, and PIR and peak burst size (PBS) in second token bucket.
Tra�c falling in �rst bucket is marked to highest precedence. Tra�c
falling within second but not �rst token bucket is marked for medium
drop precedence. Tra�c falling out from both of the buckets is marked
to lowest precedence.

Ones the policy is de�ned. Policers which are attached to policy need to be
parametrized. Parameters which they require are marks which are associated
to their conditioning actions.

--><--
$qE1E2 addPolicerEntry TSW2CM 10 11
$qE1E2 addPolicerEntry TSW2CM 20 21
--><--

After the policy is completely established one must take care about for-
warding of the marked packets. Each codepoint (mark) needs to have as-
sociated forwarding treatment. Forwarding treatments are in Di�erentiated
Services called per hop behaviors (PHB). In ns2 PHB is determined only
on the level of queue and precendence which some codepoint re�ects $qE1E2
addPHBEntry 10 0 0. RED algorithms operating on the queues need also to
be paramtrised through $qE1E2 configQ 0 1 10 40 0.10

2.2 Probing the information

Event monitoring is special class of Tcl operation, where a Trace class object
is wrapped around monitored system.

14

2.2. PROBING THE INFORMATION

2.2.1 Starting event monitoring

Event monitoring means that all events surrounding some object are recorded
into the trace �le. For that we need to open the trace �le and connect a handle
to that �le I/O.

--><--
set trace_all [open out.all w]
--><--

After the �le is opened events can be recorded to that. Simulator contains a
special commands to do that. Commands specify the object which is traced
and the handle to the �le where events are recorded. Following command

--><--
$ns trace-all $trace_all
--><--

records all events from the simulation to the �le pointed by handle
$trace_all. After the simulation trace bu�er must be cleared and the �le
closed

--><--
$ns flush-trace
close $trace_all
--><--

2.2.2 Trace �le format

Trace mechanism generates a trace �le where events are stored for post pro-
cessing. Trace �le contains information in a form of white space separated
table.

--><--
r 6.6938 4 5 tcp 1000 ------- 1 0.0 2.0 657 1301
+ 6.6938 5 2 tcp 1000 ------- 1 0.0 2.0 657 1301
- 6.6938 5 2 tcp 1000 ------- 1 0.0 2.0 657 1301
r 6.694155 1 4 tcp 1000 ------- 2 1.0 3.0 10 1356
+ 6.694155 4 5 tcp 1000 ------- 2 1.0 3.0 10 1356
d 6.694155 4 5 tcp 1000 ------- 2 1.0 3.0 10 1356
r 6.6946 0 4 tcp 1000 ------- 1 0.0 2.0 684 1357
--><--

15

CHAPTER 2. SIMULATOR CODE

First column of table represents the type of event. Event may be receive ('r'),
drop ('d'), engue ('+') or deque ('-').

Second column is the simulated time when the event occured. Time is given
in seconds from the beginning of simulation.

Third and fourth columns are source and destination nodes of event, i.e. they
show where the tracing of event took place and on which direction.

Fifth column expresses the type of packet that was traced. Type may be
protocol or action, depending on agent that generated the packet.

Sixth column indicates the packet size as encoded in IP header.

Seveth column (�������) represent �ags which may be coded in packets.

Eigth column is �ow id which is used to separate connections in aggregated
links and end points.

Nineth and tenth columns are source and destinations addresses. If special
addressing is used, this shows it. Otherwise it is the node numbers in decimal
format.

Eleventh column is the sequence number �eld. This �eld is used for protocols
and agents which make use of sequence numbers.

Twelvth column is the uniqueue id of packet. Each packet has uniqueue
id throughou the simulation. This makes easy to trace events which have
happened to a single packet on a path through the network.

2.3 Controlling simulation

Simulation is started and stopped with commands

--><--
$ns run
$ns at [expr $testTime + 1.0] "finish"
--><--

Finish command schedules the subroutine �nish at the time set by parameter
$testTime. Subroutine �nish is used to close trace �les, to do post processing
of information (not neccessary) and to plot trace information (not neccesary).
Last command in subroutine is exit which is used to terminate the program.

--><--

16

2.3. CONTROLLING SIMULATION

proc finish {} {
global ns trace_all
$ns flush-trace
close $trace_all

...
exit 0

}
--><--

Other events which must be scheduled are client start and stop times. These
events control tra�c generation within the network.

--><--
$ns at 0.0 "$cbr1 start"
$ns at 0.0 "$cbr2 start"
$ns at 0.0 "$ftp3 start"
$ns at 0.0 "$ftp4 start"
$ns at 0.0 "$ftp5 start"
$ns at 0.0 "$ftp6 start"
$ns at 0.0 "$ftp7 start"
$ns at 0.0 "$ftp8 start"
$ns at 0.0 "$ftp9 start"
$ns at 0.0 "$ftp10 start"
$ns at $testTime "$cbr1 stop"
$ns at $testTime "$cbr2 stop"
$ns at $testTime "$ftp3 stop"
$ns at $testTime "$ftp4 stop"
$ns at $testTime "$ftp5 stop"
$ns at $testTime "$ftp6 stop"
$ns at $testTime "$ftp7 stop"
$ns at $testTime "$ftp8 stop"
$ns at $testTime "$ftp9 stop"
$ns at $testTime "$ftp10 stop"
--><--

17

CHAPTER 2. SIMULATOR CODE

18

Chapter 3

Exercise

This exercise is about comparison of di�erent rate control methods in Inter-
net. Methods which are used here are token bucket, time sliding window and
single rate two color marker.

Invetigate operation of di�erent metering and marking algorithms in network
which is used for transmission of pure TCP, pure UDP and mixed (2-4 UDP
clients and 6-8 TCP clients) tra�c. Use di�erent combinations of rates (all
clients equal capacity, some clients substantially higher capacity and some
client zero capacity). See what is the outcome of the service expressed as
recovered capacities. See also how rate control mechanisms work when you
load them with di�erent levels of tra�c load (limit to substantial overload).

Due date for the exercise is 31.10.2001 at 1200 hours. Reports can only be
delivered to course locker in G-wing 2nd �oor. Other means used in delivery
are not considered.

19

