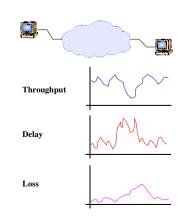


Lic.(Tech.) Marko Luoma (1/36)

S-38.180 Palvelunlaatu Internetissä S-38.180 Quality of Service in Internet

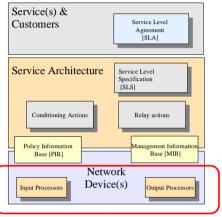
Luento 3: Mekanismit – osa 1


Lecture 3: Mechanisms – part 1

Lic.(Tech.) Marko Luoma (3/36)

Internet Service

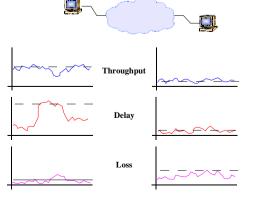
- Internet service is packet delivery service – pretty much like common snailmail service
 - Datagrams are delivered as individual items and they experience service which varies as a function of time



Lic.(Tech.) Marko Luoma (2/36)

Today's Topic

 This lecture is about functional mechanisms which can be found from the input/output processors of network devices



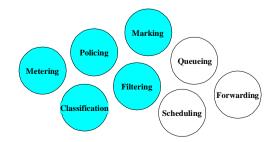
Lic.(Tech.) Marko Luoma (4/36)

Internet Service

- By adding QoS, we are aiming to provide differentiation to this situation
- Differentiation can be based on different criterion
 - Usage
 - Money
 - Status

Lic.(Tech.) Marko Luoma (5/36)

Terminology


- Connection: is dynamically formed reservation of network resources for a period of time.
 - Connection requires a state to be formed inside the network
 - State is a filter defining packets which belong into particular connection and required reservation attributes
- Flow: is formed from arbitrary packets which fall within predefined filter and temporal behavior.
 - Packets from one source to same destination arrive to investigation point with interarrival time less than t seconds.

Lic.(Tech.) Marko Luoma (7/36)

Input processor

- Input processor of Internet router consists several mechanisms
 - Filtering
 - Classification
 - Metering
 - Policing
 - Marking
 - Shaping

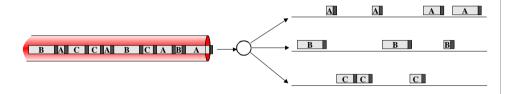
Lic.(Tech.) Marko Luoma (6/36)

Terminology

- Aggregate: is a group of flows which have same forwarding characteristics and share link resources.
- Class: is a group of connections which share same forwarding characteristics.

Lic.(Tech.) Marko Luoma (8/36)

Classification


- Individual connections can be recognized by looking sufficient number of protocol fields.
- This is used in Integrated Services architecture.
- IntServ uses reservation protocol for informing the network about fields which should be examined.
- If per connection accuracy is not needed or can not be feasibly implemented is class based operation the answer.
- This is used in Differentiated Services architecture.
- Class is based on static filters covering broad range of different connections i.e. aggregating connections to one logical unit

Lic.(Tech.) Marko Luoma (9/36)

Classification

- Classification is process where packets in the packets stream are separated into n logically separate packet streams.
- These streams are then treated as separate entities for which different actions are performed
- Separation is based on filters which match packet content to the filtering rules.

Lic.(Tech.) Marko Luoma (11/36)

Service Level Management

- QoS based networks need careful management
 - How to provision the network so that there will not be unnecessary queuing or packet loss
 - How to control the amount of traffic that gets into the network
- · Network level
- Customer level / connection level
- · Packet level

Lic.(Tech.) Marko Luoma (10/36)

Filtering

• Commonly filters are based on IP packet / transport header information

- IP addresses

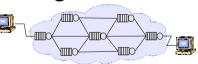
Protocol information

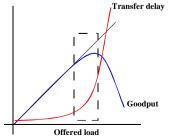
- DSCP-field

- Port information

- Length information

			-		
Version	IHL	ToS/DSCP	Length		
Identification			Flags	gs Offset	
ΠL		Protocol	Checksum		
Source Address					
Destination Address					
Options Padding					Padding
	Sourc	e Port	Destination Port		


• Generally any fixed block of bits can be used as a filter



Lic.(Tech.) Marko Luoma (12/36)

Service Level Management

- Overall objective is to offer QoS and/or maximize network throughput
- This requires
 - Limiting user traffic to the level that individual links operate on optimal fashion
 - Individual links can not be fully utilized
 - Unequal capacities
 - · Uncertainty of paths
 - · Uncertainty of demands

Lic.(Tech.) Marko Luoma (13/36)

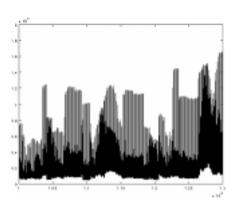
Rate Control

- Task is to decide which user packets should be delivered into the network and on what priority (mark)
 - They do not violate QoS management principles within the network by overloading the network
- Rate control operates in three levels
 - Measures the traffic
 - Compares the measured information to information in user / network policy
 - Executes policy based on comparison results
 - Marking
 - Dropping
 - Shaping

Lic.(Tech.) Marko Luoma (15/36)

Rate Control

- Objectives:
 - Simple
 - · Easy algorithm
 - · Few parameters
 - Accurate
 - · Actions are correct
 - · Actions are transparent
 - · Actions are immediate
 - Predictable
 - Action are consistent from time to time


- Requires:
 - Parametrization of user traffic
 - · Either flow level
 - · Or Aggregate level
 - This is bound to SLA made with the ISP

Lic.(Tech.) Marko Luoma (14/36)

Rate Control

- User traffic process is largely dependent on application which is used.
 - Some applications produce constant traffic stream
 - Fixed size packets
 - · Constant interarrival times
 - Other may produce bursts of packets
 - Variable size packets
 - Variable interarrival times

Lic.(Tech.) Marko Luoma (16/36)

Metering

- Packet stream is measured to find out some of the following parameters:
 - Peak rate maximum rate on which user is sending
 - Sustained rate average rate on which user is sending
 - Burst size maximum burst size which user sending on either with peak or average rate

- Actual measurement of information may be based on
 - Continuous time measurement
 - Discrete event analysis
 - Window based analysis

Lic.(Tech.) Marko Luoma (17/36)

Token Bucket

- Produces information whether arrival rate is more or less than the threshold
- · Algorithm is based on
 - Number of tokens in token bucket (in bytes)
 - $_$ Arrival time (T_{Now}, T_{Last Arrival})
- Two limiting parameters
 - Bucket size (S)
 - Token rate (R) * token size

Initial condition:

 $Number\ of\ Tokens = S$

Upon each arrival:

 $Increment = TokenSize \cdot R \cdot (T_{Now} - T_{Last\ Arrival})$

Decrement = PacketLength

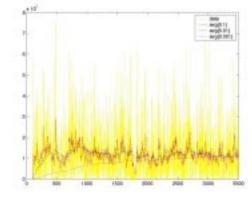
Conformance = Number of Tokens + Increment - Decrement

if $Conformance \ge 0$

 $\textit{then Number of Tokens} = \min(\textit{S}, \, \textit{Conformance}\,)$

 $else\ Number\ of\ Tokens = min(S,\ Number\ of\ Tokens + Increment)$

Lic.(Tech.) Marko Luoma (19/36)

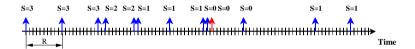

Packet per packet EWMA meter

- Measures packet stream by using exponentially weighted moving average filter.
 - Tunable by parameter
 - Memory (ϵ)

Initial condition: avg(0) = 0

After every packet arrival

$$avg(n+1) = (1-\epsilon) \cdot avg(n) + \epsilon \cdot \frac{PacketLength}{t}$$



Lic.(Tech.) Marko Luoma (18/36)

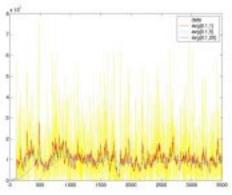
Token Bucket

· In ideal situation

- Example:
- Packets arrive with intervals of token generation rate (R)
- R=10 - S=3
- Packets are size of token
- Variation of arrivals is compensated with bucket size (S)
 - · Allows bursting

Lic.(Tech.) Marko Luoma (20/36)

Windowed EWMA meter


- Measures packet stream by using exponentially weighted moving average filter with sampling window.
 - Tunable by parameters
 - Memory (ϵ)
 - Sampling interval (ΔT)

Initial condition:

avg(0) = 0

After every ΔT time units

 $avg(t_{n+1}) = (1 - \epsilon) \cdot avg(t_n) + \epsilon \cdot bytes during[t_{n+1}, t_n]$

Lic.(Tech.) Marko Luoma (21/36)

Time Sliding Window Meter

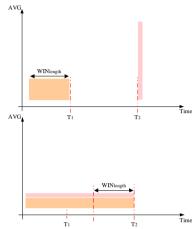
- TSW is memory based, windowed average rate estimator
- Tunable by parameter
 - · Window length

Initial condition:

avg(0) = 0

$$Win_{length} = C$$

 $T_{front} = 0$


After every packet arrival:

 $Bytes_{TSW} = avg(n) \cdot Win_{length}$

$$New_{bytes} = Bytes_{TSW} + PacketLength$$

$$avg(n+1) = \frac{New_{bytes}}{T_{---} - T_{foor} + Win_{look}}$$

$$T_{front} = T_{now}$$

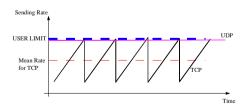
Lic.(Tech.) Marko Luoma (23/36)

Conformance algorithms

- · Strict conformance
 - Packets exceeding contracted rate are marked immediately as nonconforming
- TSW conformance
 - Packets exceeding 1.33 times contracted rate are marked as nonconforming
- · Probability conformance
 - Packets exceeding contracted rate are marked as non-conforming with increasing probability

Lic.(Tech.) Marko Luoma (22/36)

Metering


- · Based on the measured information a conformance statement is declared
- Conformance is the observation whether the measured variable is within predefined boundaries.
 - Customer has contracted rate of X bps with variation of x bps
 - Customer has contract of average rate X bps and peak of Y bps. He is allowed to send bursts of Z kB in peak rate.

Lic.(Tech.) Marko Luoma (24/36)

Rate Control Problems

- Two parallel transport protocols with contradicting control:
 - UDP with no control
 - TCP with additive increase exponential decrease rate control
- Problem: Metering system cannot easily offer fair service to both TCP and UDP clients in the same system.

Lic.(Tech.) Marko Luoma (25/36)

Marking

- Marker is used to attach conformance / class information to every packet.
- Marker uses IPv4 TOS/DSCP field to convey information for other processing elements in the network.
 - TOS
 - Prec: 3 bit priority
 - TOS: user preference for routing
 - DSCP
 - · Class and precedence

Versio Hle	en TOS	Length		
Ident		Flags Offset		
TTL	Protocol	Checksum		
SourceAdo	lr			
Destination	nAddr			
Options (variable) PAD				
		Prec. TOS		

Lic.(Tech.) Marko Luoma (27/36)

Queues

- Queues are used to store **contending** packets
 - Contention is temporary event rising from statistical multiplexing
 - Packets from different input links of a router attempt to the same output link at certain time
 - Packets from a higher speed link arrive temporarily too fast for a slow speed link
- If contention is permanent queues overflow i.e. network is congested
- Difference:
 - Contention packets are not lost only delayed
 - Congestion packets are not only delayed but also lost

Lic.(Tech.) Marko Luoma (26/36)

Output processor

- Output processor of a Internet router consists following elements
 - Queues and their management algorithms
 - Scheduling

Lic.(Tech.) Marko Luoma (28/36)

Queues

- Congestion situations demand queue management to decide
 - When packets should be discarded
 - Which are the packets that should be discarded
- Prevalent solutions
 - Tail Drop
 - Random Early Detection (RED)
 - Random Early Detection In/Out (RIO)

Lic.(Tech.) Marko Luoma (29/36)

Tail Drop

- · Simple algorithm:
 - If arriving packets sees a full queue it is discarded
 - Otherwise it is accepted to the queue
- Problem:
 - Poor fairness in distribution of buffer space
 - Unable to accommodate short transients when queue is almost full
 - Bursty discarding leading global syncronisation
- Global syncronisation is a process where large number of TCP connections syncronise their window control due to concurrent packet losses.
 - Packet losses are bursty, therefore window decreases to one and halts the communication

Lic.(Tech.) Marko Luoma (31/36)

RED

• Qsize is used to calculate average length of the queue:

```
Initial condition: avg(0) = 0
Count = -1
When Qsize=0: T_{ide} = T_{now}
After every packet arrival: if Qsize(n)>0: avg(n+1) = (1-\epsilon) \cdot avg(n) + \epsilon \cdot Qsize(n)
else: avg(n+1) = avg(n) \cdot (1-\epsilon)^{f(T_{ow}-T_{abc})}
```

If queue is empty, averaging is done based on the assumption that N packets have passed the algorithm before actual packet arrival. -> Decay of average during idle times

• Packets are discarded based on the average queue length:

Count = 0

$$if \ avg(n+1) < min_{th}:$$

$$Count = -1$$

$$else \ if \ min_{th} \le avg(n+1) < max_{th}:$$

$$count = count + 1$$

$$P_b(n+1) = max_p \cdot \frac{avg(n+1) - min_{th}}{max_{th} - min_{th}}$$

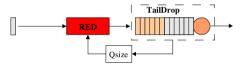
$$P_a(n+1) = \frac{P_b(n+1)}{1 - count \cdot P_b(n+1)}$$

$$With \ probability \ P_a(n+1):$$

$$Discard \ packet$$

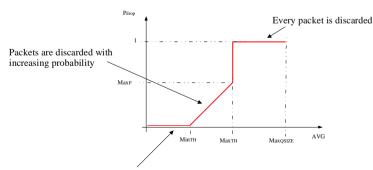
$$Count = 0$$

$$else \ if \ max_{th} \le avg(n+1)$$


$$Discard \ packet$$

Lic.(Tech.) Marko Luoma (30/36)

Random Early Detection


- RED is an active queue management algorithm (AQM), which aims to
 - Prevent global syncronisation
 - Offer better fairness among competing connections
 - Allow transient burst without packet loss
- Algorithm operates on the knowledge of current Qsize
 - Updated on every arrival and departure from the actual queue

Lic.(Tech.) Marko Luoma (32/36)

RED

Every packet is allowed to pass into the queue

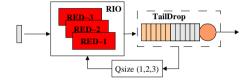
Lic.(Tech.) Marko Luoma (33/36)

Achievements of RED

- Some packets are discarded even before overflow of the actual buffer
 - Is it good or bad?
 - Bad: A part of buffer space is in some occasions wasted
 - Good: A signal is sent to cooperating sources that they should decrease their sending rate or congestion will occure
- On the average early packet discards will hit connections which use more than their fair share of capacity in contending link
 - Is it good or bad?
 - Bad: Makes differentiation impossible
 - Good: Is consistent policy and withing the goal of conventional Best Effort model

Lic.(Tech.) Marko Luoma (35/36)

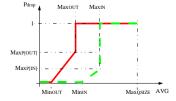
RIO

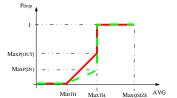

- Operation is usually based on following idea:
 - Customer has contracted capacity of X bps
 - He sends packets with rate Y bps
 - If Y is greater than X, some packets are marked as out of profile.
 - Out of profile packets usually experience harsh treatment on contending situations
- Calculation of the average queue length is modified to take into accout number of packets with different markings:
 - In (green): Only green packets
 - In/Out (yellow): Green and yellow packets
 - Out (red): All packets in the queue

Lic.(Tech.) Marko Luoma (34/36)

RED In/Out – WRED

- When we aim for differentiation of resources we must also allow different shares of resources in contending link or buffer
- One way to do it is to use RED with several parallel algorithms and thresholds
 - RED In/Out -> RIO or WRED
 - Popular implementations use two or three parallel algorithms
- This requires that packets are marked
 - One algorithm is responsible of one or several marks





Lic.(Tech.) Marko Luoma (36/36)

Parameters in WRED

- All parameres are independent for different markings
 - More dimensions in creating differentiation
- Some parameters are common for different markings
 - Less dimensions but more understandable

