S-38.180 Palvelunlaatu Internetissä

S-38.180 Quality of Service in Internet

Luento 4: Mekanismit - osa 2
Lecture 4: Mechanisms - part 2

Scheduling

- Selecting the order of packets means that resource sharing is controlled with predefined policy
- Policy defines the amount of resources which are allocated to the connections / classes for which single packets belong to.

One end in this continum is that predefined amount of resources is allocated to the connection.

- Other end is that no allocation is done and resources are shared on the basis of the need

Scheduling
 ing

\qquad

- Task of a scheduler is to decide the order of packets which are transmitted from the queue

Nomenelanamy

Scheduling

- There are vast amount of schedulers developed for different purposes
- Generally they can be divided into categories of
- Work-conserving vs non-workconserving
- Time-based vs frame-based
- Continuous vs packetized
- Priority vs no priority

Scheduling

- Conservation of work means that scheduler is executing its task as long as it has some work to do.
- Techinacally this means that there are packets in the queue which has to be sent into the link before scheduler can take a break i.e. change to the idle state.
- Non-work conserving scheduler can idle even though it has packets in the queue.
- Why we would want to have nonwork conserving scheduler?
- Conservation of work means that packets are sent to the link even though for the receiving would prefere it to come a little bit later.
- This can happen with real-time applications which send packets with constant time intervals. However, network can multiplex them so that they form bursts. Non-work conserving scheduler may delay packets so that intervals structure is maintained throughout the network.
 Lic.(Tech.) Marko Luoma (7/24) \qquad

Scheduling

- Time based scheduling
- Uses either arrival time or finishing time as a criteria for ordering
- Time may be virtual or real-time depending on scheduler time
- Virtual time is usually finishing time in ideal scheduler i.e Scheduler which is not packetized
- Frame based scheduling
- Uses fixed frame which is partitioned for scheduled items based on their weights.
- During rotation if partition and left overs from previous partition aggregate enough token for a item then it is served. If not tokens are added for next round.
- Number of packets may be served from a single class if frame is big.

Scheduling

Nomaticthum.
ic.(Tech.) Marko Luoma (8/24)

- Continuous time
- Scheduling decissions and calculations are done based on continuous time units
- Fluid-Flow modeling - packets are infinitesimally small
- Assumes that number of packets could be served on same time (not possible)

- Packetized
- Scheduling decissions and calculations are based on packet per packet analysis
- Distorts fluid flow model

Scheduling

- Scheduling can happen:
- Within one queue, sorting packets inside queue to appropriate transmission order
- Between several queues, dispatching head of line packets from different queues
- Hierarchically over several schedulers, combination of previous ones
- Many of scheduling algorithms can be used to produce QoS in each of these cases

Scheduling

- First Come First Served (FCFS) is prevalent scheduling method in routers.
- FCFS uses arrival time information as sorting criteria for packet dispatching.
- FCFS is not able to offer any QoS as time is the only parameter that has influence to the order of packets.

ния (1)
Nomalie blown \qquad

Scheduling

- Prioritized ordering may lead to starvation of resources in low priority classes if raffic in high priority classes is not limited.
- This can be accomplished by using
- Connection admission control
- Over provisioning
- Rate control
- Modifying priority scheduler to take class rates into account (token based operation) Low priority $\|\|\|\|\|\|\|$

Smathe limung
Lic.(Tech.) Marko Luoma (10/24)

Scheduling

- Simple priority scheduler extends FCFS to be able to distinguish between more and less important traffic.
- Packets are ordered first based on their priority and second on their arrival time.

Smestivethum

Scheduling

- Deadline based scheduling schemes (e.q. Earlies Due Date) are based on the calculation of finishing time if packet would have been scheduled when it arrived to the queue
- Packets are transmitted on the order of finishing times.

Musve tanterit

Scheduling

- Generalized Processor Sharing is ideal fair queueing algorithm which is based on fluid flow model.
- GPS provides service to the individual connections based on their weights.
- GPS is work conserving scheduler and thus distributes excess capacity to connections which are able to utilize it.

Scheduling

- Packetized Generalized Processor Sharing is packet per packet approximation of GPS scheduling.
- Most prevalent implementation of PGPS is weighted fair queueing (WFQ)
- WFQ uses calculation of finishing time in corresponging GPS system as a criteria for sorting the packets.
- Strict delay bound caused by scheduling when traffic is constrained by a token bucket of token rate r and bucket depth b

$$
\begin{aligned}
& \text { Service rate for connection i: } r_{i} \geq \frac{\text { Weight }}{\sum_{j} \text { Weighth }} \text {. LinkRate } \\
& \text { Delay for connection } i: D_{i} \leq \frac{b_{i}}{r_{i}}
\end{aligned}
$$

Remember these results were derived from the assumption that packets flow like fluid through the system i.e. there would be a dedicated link with capacity \boldsymbol{r} between endpoints

Scheduling

- Disadvantages of GPS are:
- Departures from GPS are colliding which makes the use of GPS based scheduler impossible
- However it may be used as backgroud scheduler if collisions are resolved in some manner
- Heavy calculation of departure times
- Departure time of every packet in scheduler changes whenever a packet arrives or departs the scheduler

Scheduling

- Advantages of GPS are:
- Fairness which it provides for the sharing connections

$$
\frac{\mid \text { Service }\left.(t, t+\Delta t)\right|_{i}}{\mid \text { Service }\left.(t, t+\Delta t)\right|_{j}} \geqslant \frac{\text { Weight } t_{j}}{\text { Weight } j_{j}}
$$

Nomane limery Lic.(Tech.) Marko Luoma (19/24)

Scheduling

- Weighted Round Robin is popular implementation of frame based fair queueing.
- WRR uses a rotation where each individual connection is served in relation of their weights.
- Service is usually based on packets, which causes WRR to be not able to distribute bandwidth fairly in systems which have variable packet lengths.

Scheduling

- WFQ scheduling has number of variant which aim:
- Ease the calculation of finishing time in corresponding GPS system
- By replacing the idle time function with the finishing time of packet which was in service when backlogging packet arrived to the system.
- By replacing the time calculation with frame based operation
- Make the fairness packetized system as good as continuous system
- Allow hierarchical construction of service

Scheduling

- Deficit Round Robin is extention of WRR which takes account the packet size
- DRR uses a rotation where a frame of N bits is divided to indivivual connections in relation to their weights (quantums)
- Quantums which individual connections receive serve packets
- If the quantum is small, many rotations are required to serve backlogged connection
- If the quantum is big, many packets can be served on one rotation
- DRR uses special counter for each backlogged connection which stores the information of received bits.
- If connection gets to non backlogged state counter is cleared

Scheduling

- Class Based Queueing is one form hierarchical scheduling
- In CBQ scheduling is divided into two cases:
- Unregulated: When a class is scheduled by general scheduler
- Regulated: When a class is scheduled by link share scheduler
- Class is regulated in situations when network is persistently contended and class has run over its limits
- Actual implementation of scheduling is uniform
- Both schedulers manipulate HOL packets time to send information which is then examined by actual dispatcher
- CBQ uses different variants of round robin schedulers as a general scheduler
- Link share scheduler is based on general rules supplied by user

Scheduling

- Link sharing guidelines are based on tree like structure
- Link resources are on Root Class
- Intermediate Classes form logical groupings
- Organisations
- Protocols
- Leaf classes are actual queues with distinct traffic

