Exercise 1.6 Verify (1.8) by determining the means and variances of T.
We need to determine the means and variances of

$$
T=\frac{1}{N} \sum_{n=0}^{N-1} x[n]
$$

Now the means are

$$
\begin{aligned}
E\left(T ; \mathcal{H}_{0}\right) & =E\left(\frac{1}{N} \sum_{n=0}^{N-1} w[n]\right) \\
& =\frac{1}{N} \sum_{n=0}^{N-1} E(w[n])=0 \\
E\left(T ; \mathcal{H}_{1}\right) & =E\left(\frac{1}{N} \sum_{n=0}^{N-1}(A+w[n])\right) \\
& =\frac{1}{N} \sum_{n=0}^{N-1} E(A+w[n])=A .
\end{aligned}
$$

Since $E\left(T ; \mathcal{H}_{0}\right)=0$ we have $\operatorname{var}\left(T ; \mathcal{H}_{0}\right)=E\left(T^{2} ; \mathcal{H}_{0}\right)$. On the other hand,

$$
\begin{aligned}
\operatorname{var}\left(T ; \mathcal{H}_{1}\right) & =E\left(\left(\frac{1}{N} \sum_{n=0}^{N-1}(x[n]-A)\right)^{2} ; \mathcal{H}_{1}\right)=E\left(\left(\frac{1}{N} \sum_{n=0}^{N-1}(A+w[n]-A)\right)^{2}\right) \\
& =E\left(\left(\frac{1}{N} \sum_{n=0}^{N-1}(w[n])\right)^{2}\right)=E\left(T^{2} ; \mathcal{H}_{0}\right)
\end{aligned}
$$

and thus $\operatorname{var}\left(T ; \mathcal{H}_{0}\right)=\operatorname{var}\left(T ; \mathcal{H}_{1}\right)$. The value of both variances is given as

$$
\begin{aligned}
E\left(T^{2} ; \mathcal{H}_{0}\right) & =E\left(\left(\frac{1}{N} \sum_{n=0}^{N-1}(w[n])\right)^{2}\right) \\
& =\frac{1}{N^{2}} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} E(w[m] w[n]) \\
& =\frac{1}{N^{2}} \sum_{n=0}^{N-1} E\left(w[n]^{2}\right)=\sigma^{2} / N
\end{aligned}
$$

since $E(w[m] w[n])=0$ when $m \neq n$ (uncorrelated noise) and $E(w[n] w[n])=$ σ^{2}.

