Exercise 3.4 For the DC level in $W G N$ detection problem assume that we wish to have $P_{F A}=10^{-4}$ and $P_{D}=0.99$. If the SNR is $10 \log _{10} A^{2} / \sigma^{2}=$ $\Leftrightarrow 30 \mathrm{~dB}$, determine the necessary number of samples.

From Equation (3.8) we get that

$$
P_{D}=Q\left(Q^{-1}\left(P_{F A}\right) \Leftrightarrow \sqrt{d^{2}}\right),
$$

where $d^{2}=N A^{2} / \sigma^{2}$. Thus we have

$$
\begin{aligned}
Q^{-1}\left(P_{D}\right) & =Q^{-1}\left(P_{F A}\right) \Leftrightarrow \sqrt{d^{2}} \\
\Leftrightarrow d^{2} & =\left(Q^{-1}\left(P_{F A}\right) \Leftrightarrow Q^{-1}\left(P_{D}\right)\right)^{2}
\end{aligned}
$$

and we get

$$
\begin{aligned}
N & =\frac{\left(Q^{-1}\left(P_{F A}\right) \Leftrightarrow Q^{-1}\left(P_{D}\right)\right)^{2}}{A^{2} / \sigma^{2}} \\
& =\frac{\left(Q^{-1}\left(10^{-4}\right) \Leftrightarrow Q^{-1}(0.99)\right)^{2}}{0.001} \\
& =36546 .
\end{aligned}
$$

Exercise 3.18 Find the MAP decision rule for

$$
\begin{array}{ll}
\mathcal{H}_{0} & : \\
\mathcal{H}_{1} & :
\end{array} x[0] \sim \mathcal{N}(0,1) \sim \mathcal{N}(0,2)
$$

if $P\left(\mathcal{H}_{0}\right)=1 / 2$ and also if $P\left(\mathcal{H}_{0}\right)=3 / 4$. Display the decision regions in each case and explain.
According to the MAP decision rule \mathcal{H}_{1} is decided, if $p\left(\mathcal{H}_{1} \mid \mathbf{x}\right)>p\left(\mathcal{H}_{0} \mid \mathbf{x}\right)$. Now this is equal to

$$
\begin{aligned}
p\left(\mathbf{x} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right) & >p\left(\mathbf{x} \mid \mathcal{H}_{0}\right) p\left(\mathcal{H}_{0}\right) \\
\Leftrightarrow \frac{p\left(\mathbf{x} \mid \mathcal{H}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{H}_{0}\right)} & >\frac{p\left(\mathcal{H}_{1}\right)}{p\left(\mathcal{H}_{0}\right)}=\gamma \\
\Leftrightarrow \frac{\frac{1}{\sqrt{2 \pi \cdot 2}} e^{-1 /(2 \cdot 2) x^{2}[0]}}{\frac{1}{\sqrt{2 \pi}} e^{-1 / 2 x^{2}[0]}} & >\gamma .
\end{aligned}
$$

Taking a logarithm this yields

$$
\begin{aligned}
\ln 1 / \sqrt{2} \Leftrightarrow 1 / 4 x^{2}[0]+1 / 2 x^{2}[0] & >\ln \gamma \\
\Leftrightarrow 1 / 4 x^{2}[0] & >\ln \sqrt{2} \gamma \\
\Leftrightarrow|x[0]| & >2 \sqrt{\ln \sqrt{2} \gamma}
\end{aligned}
$$

For $P\left(\mathcal{H}_{0}\right)=P\left(\mathcal{H}_{1}\right)=1 / 2$ we get $\gamma=1$ and \mathcal{H}_{1} is decided if $|x[0]|>1.18$. For $P\left(\mathcal{H}_{0}\right)=3 / 4$ and $P\left(\mathcal{H}_{1}\right)=1 / 4$ we get $\gamma=3$ and \mathcal{H}_{1} is decided if $|x[0]|>2.40$.

Thus the treshold becomes larger as $P\left(\mathcal{H}_{0}\right)$ increases, which is natural since \mathcal{H}_{0} is then more likely to occur.

