Exercise 3.4 For the DC level in WGN detection problem assume that we wish to have $P_{FA} = 10^{-4}$ and $P_D = 0.99$. If the SNR is $10 \log_{10} A^2 / \sigma^2 = \Leftrightarrow 30 \text{dB}$, determine the necessary number of samples.

From Equation (3.8) we get that

$$P_D = Q\left(Q^{-1}(P_{FA}) \Leftrightarrow \sqrt{d^2}\right),\,$$

where $d^2 = NA^2/\sigma^2$. Thus we have

$$Q^{-1}(P_D) = Q^{-1}(P_{FA}) \Leftrightarrow \sqrt{d^2}$$

$$\Leftrightarrow d^2 = \left(Q^{-1}(P_{FA}) \Leftrightarrow Q^{-1}(P_D)\right)^2$$

and we get

$$N = \frac{(Q^{-1}(P_{FA}) \Leftrightarrow Q^{-1}(P_D))^2}{A^2/\sigma^2}$$

= $\frac{(Q^{-1}(10^{-4}) \Leftrightarrow Q^{-1}(0.99))^2}{0.001}$
= 36546.

Exercise 3.18 Find the MAP decision rule for

$$\begin{aligned} \mathcal{H}_0 &: \quad x[0] \sim \mathcal{N}(0,1) \\ \mathcal{H}_1 &: \quad x[0] \sim \mathcal{N}(0,2) \end{aligned}$$

if $P(\mathcal{H}_0) = 1/2$ and also if $P(\mathcal{H}_0) = 3/4$. Display the decision regions in each case and explain.

According to the MAP decision rule \mathcal{H}_1 is decided, if $p(\mathcal{H}_1|\mathbf{x}) > p(\mathcal{H}_0|\mathbf{x})$. Now this is equal to

$$p(\mathbf{x}|\mathcal{H}_{1})p(\mathcal{H}_{1}) > p(\mathbf{x}|\mathcal{H}_{0})p(\mathcal{H}_{0})$$

$$\Leftrightarrow \frac{p(\mathbf{x}|\mathcal{H}_{1})}{p(\mathbf{x}|\mathcal{H}_{0})} > \frac{p(\mathcal{H}_{1})}{p(\mathcal{H}_{0})} = \gamma$$

$$\Leftrightarrow \frac{\frac{1}{\sqrt{2\pi}\cdot 2}e^{-1/(2\cdot 2)x^{2}[0]}}{\frac{1}{\sqrt{2\pi}}e^{-1/2x^{2}[0]}} > \gamma.$$

Taking a logarithm this yields

$$\begin{split} \ln 1/\sqrt{2} &\Leftrightarrow 1/4x^2[0] + 1/2x^2[0] > \ln \gamma \\ &\Leftrightarrow 1/4x^2[0] > \ln \sqrt{2\gamma} \\ &\Leftrightarrow |x[0]| > 2\sqrt{\ln \sqrt{2\gamma}} \end{split}$$

For $P(\mathcal{H}_0) = P(\mathcal{H}_1) = 1/2$ we get $\gamma = 1$ and \mathcal{H}_1 is decided if |x[0]| > 1.18. For $P(\mathcal{H}_0) = 3/4$ and $P(\mathcal{H}_1) = 1/4$ we get $\gamma = 3$ and \mathcal{H}_1 is decided if |x[0]| > 2.40.

Thus the treshold becomes larger as $P(\mathcal{H}_0)$ increases, which is natural since \mathcal{H}_0 is then more likely to occur.