
S-38.220 Postgraduate course on signal
processing in communications

FALL 1999

Pipelined and parallel recursive and
adaptive filters

Kari Seppänen
VTT Information Technology

Kari.Seppanen@vtt.fi

November 16, 1999

Contents

1 Introduction 2

2 Pipeline interleaving in digital filters 3
2.1 Inefficient single/multichannel interleaving 3
2.2 Efficient single-channel interleaving 4

3 Pipelining in 1st-order IIR digital filters 5
3.1 Look-ahead pipelining for 1st-order IIR filters 5
3.2 Look-ahead pipelining with power-of-2 decomposition 6
3.3 Look-ahead pipelining with general decomposition 6

4 Pipelining in Higer-order IIR digital filters 7
4.1 Clustered look-ahead pipelining 7
4.2 Stable clustered look-ahead filter design 8
4.3 Scattered look-ahead pipelining 8
4.4 Scattered look-ahead pipelining with power-of-2 decomposition 8
4.5 Scattered look-ahead pipelining with general decomposition . . 8
4.6 Constrained filter design techinques 9

5 Parallel processing for IIR filters 10

A Exercise 11

1

Chapter 1

Introduction

Any desired digital filter spectrum could be realized using either FIR or IIR
digital filters. IIR filter is often preferred because specified spectrum could
be realized using a much lower order IIR than FIR. In time-varying systems,
e.g., noice cancellation, echo cancellation, etc., whrere FIR and IIR filters
are not useful adaptive filters are utilized. Instead of constant coefficients
their coefficients are adapted at each iteration until they converge.

Using pipelining or parallel processing is straightforward in nonrecursive
computations. Recursive and adaptive filters cannot be easily pipelined due
to feedback loops in these filters. This presentation introduces some ap-
proches based on look-ahead computation, incremental block processing and
relaxed look-ahead techniques.

2

Chapter 2

Pipeline interleaving in digital
filters

2.1 Inefficient single/multichannel interleav-

ing

First-order linear time-invariant (LTI) recursion is described by

y(n+ 1) = ay(n) + bu(n)

shown in figure 2.1. The iteration period is (Tm + Ta).
M-stage pipelined version is obtained by inserting (M − 1) additional

latches inside the loop (figure 2.2). The clock period could be reduced by M
times but at the same time sample period will increase to M clock periods.
For single time series system will be useful only for 1/M of the time. If M
independent time seriers are available the hardware can be fully utilized.

This slow interleaved system which is often called as M-slow circuit is
suitable for applications requiring nominal concurency. It is inefficient if
there is not M indepentend time series available.

D

u(n)

b a

y(n+1)
y(n)

Figure 2.1: A simple 1st-order recursion

3

5D

u(n)

b a

y(n+1)
y(n)

Figure 2.2: A simple 1st-order recursion with 5-way interleaving

2.2 Efficient single-channel interleaving

Look-ahead transformation can be used to overcome the limitations of the M
slow system. If 1st-order LTI is recasted to experess y(n + 2) as a function
of y(n) we get

y(n+ 2) = a[ay(n) + bu(n)] + bu(n).

Iteration bound for this system is 2(Tm + Ta)/2 which is same as in M slow
system. However, equivalent recursion is expressed by

y(n+ 2) = a2y(n) + abu(n) + bu(n)

which have iteration bound of (Tm + Ta)/2.
Generally (M − 1) steps of look-ahead of the iteration are descibed by

y(n+M) = aMy(n) +
M−1∑
i=0

aibu(n+M − 1− i).

Iteration bound is (Tm+Ta)/M , which corresponds to M times higher sample
rate. Complexity and system latency are lineary increased.

The steady-state behavior of the system is not altered, i.e., for sufficiently
old inputs the outputs of the transformed system and the original system will
be identical.

4

Chapter 3

Pipelining in 1st-order IIR
digital filters

With look-ahead techinque canceling zeroes and poles with equal angular
spacing and a similar distance from the origin than the original pole are
introduced. Pipelined realizations are always guaranteed to be stable for
1st-order IIR filters if the original filter is stable.

Decomposition technique is used to implement the nonrecursive portion
generated by look-ahead process to obtain logarithmic increase in hardware.

Example: 1st-order IIR with transfer function

H(z) =
1

1− az−1

gives
y(n) = ay(n− 1) + u(n).

The sample rate is limited by the computation time of one multiply-add
operation.

3.1 Look-ahead pipelining for 1st-order IIR

filters

Basic idea in look-ahead pipelining is to add cancelling poles and zeros to

transfer function such that the coefficients of z−1,
..., z−(M−1) are zero. Result

is that there will be M delay elements in the critical loop.
Example:

H(z) =
1

1− az−1

5

adding poles and zeroes to z = ae±(j2π/3)

H(z) =
1 + az−1 + a2z−2

1− a3z−3
.

3.2 Look-ahead pipelining with power-of-2 de-

composition

With power-of-2 decomposition, M -stage pipelined implementation can be
obtained by log2 M sets of transformations. If original transfer function has
a single pole at a, the pipelined version has poles at locations

a, aej2π/M , aej2(2π)/M , . . . , aej(M−1)2π/M

. Total complexity of pipelined implemetation is log2 M + 2.
Although the pipelined recursive filters are stable under infinite precision

condition, they are sensitive to coefficients under finite precision. The pole
location is more sensitive for small values but this is not a problem since a
filter with poles close to origin are more stable.

Finite precision causes also inexact pole-zero cancellation which leads to
phase and magnitude errors which can be reduces by increasing wordlength.

3.3 Look-ahead pipelining with general de-

composition

The idea of decomposition can be extended to to any arbitrary numeber of
M . If M = M1M2 . . .Mp, nonrecursive stages implement (M1− 1),M1(M2−
1), . . . ,M = M1M2 . . .Mp−1(Mp − 1) zeros totaling (M − 1) zeros.

6

Chapter 4

Pipelining in Higer-order IIR
digital filters

For higher order filters there are two techiques for pipelining: clustered and
scattered look-ahead techniques. First technique require linear complexity but
does not always quarantee stability. 2nd technique can be use to derive stable
pipelined filters. Pipelining can be achieved with out pole-zero cancellation
by using constrained filter design technique.

Direct form N-th order recursive filter is described by

H(z) =

∑N
i=0 biz

−i

1−∑N
i=1 aiz

−i

giving

y(n) =
N∑
i=1

aiy(n− i) +
N∑
i=0

biun− i.

4.1 Clustered look-ahead pipelining

Basic idea of clustered look-ahead pipelining is to add cancelling poles and ze-
ros to the filter transfer function such that the coefficients of z−1, . . . , z−(M−1)

are zero. Thus, loop can be pipelined by M stages.
The numerator can be implemented with (N+M) multiplications and the

denominator with N multipications. Thus, total complexity is (N+N+M)
which is linear to speedup. However, the additional poles may lie outside the
unit circle, which changes the stability of the filter.

7

4.2 Stable clustered look-ahead filter design

It has been shown that clustered look-ahead transformation always produces
a stable filter at some critical delay Mc such that stability will be assured for
M > Mc. So, if desired pipeline delay M does not produce stable filter M
should be increased until a stable filter is obtained.

When the number of denominator multipliers is large, the filter will suffer
from roundoff noise.

4.3 Scattered look-ahead pipelining

In this look-ahead for each pole in the original filter (M −1) cancelling poles
and zeros with equal angular spacing and a same distance from orgining as the
original pole are added. This look-ahead approach produces stable pipelined
filters if the original filter is stable. The complexity of numerator is (NM+1)
multiplications and N multiplications for denumerator. Total complexity is
(NM+N+1) which is linear with respect to M but much greater than that of
clustered look-ahead. It should be noted that the latch complexity is M2.

4.4 Scattered look-ahead pipelining with power-

of-2 decomposition

A 2-stage pipelined implementation can be obtained by multiplying the nu-
merator and denominator by

1−
N∑
i=1

(−1)iaiz
−i.

Similarily, subsequent transformations lead to 4, 8, and 16 stage pipelined
implementations. Each transformation leads to an increase in multiplication
by N while doubling the speed or sample rate. M-stage pipelining can be
achieve applying log2 M transformations, which leads to multiplication com-
plexity of (2N +N log2 M + 1). Total number of delays is NM(log2 M + 1).

4.5 Scattered look-ahead pipelining with gen-

eral decomposition

General decomposition for arbitrary number of pipeline stages can be done
in similar way as in 1st-order IIR.

8

4.6 Constrained filter design techinques

The idea behind constrained filter design is to constrain the denominator to
be polynomial in zM rather than z, i.e., to expess it in scattered look-ahead
from. The constrained filter design requires less complexity and produces
less roundoff noise. Two methods that can be used are ”Modified Deczky’s
filter design” and ”Martinez-Parks decimation filter desing”.

9

Chapter 5

Parallel processing for IIR
filters

1st-order IIR
y(n+ 1) = ay(n) + u(n)

can be parallelized (here 4-parallel) by iterating the recursion or by applying
look-ahead technique

y(n+ 4) = a4y(n) + a3u(n) + a2u(n+ 1) + au(n+ 2) + u(n+ 3)

and substituting n = 4k to get single stage

y(4k + 4) = a4y(4k) + a3u(4k) + a2u(4k + 1) + au(4k + 2) + u(4k + 3).

Block processing structure can be obtained by subsituting n = 4k + 4, 4k +
5, 4k + 6, 4k + 7.

Hardware complexity of such system is squared in respect of parallelism.
Such system is hardware expensive but it is robust to roundoff noise.

By using incremental block processing hardware complexity is reduced
but delay and roundoff noise are increaced. The idea is to use y(4k) to
compute y(4k + 1), y(4k + 1) to compute y(4k + 2), etc.

10

Appendix A

Exercise

Homework is 10.4.

11

	Introduction
	Pipeline interleaving in digital filters
	Inefficient single/multichannel interleaving
	Efficient single-channel interleaving

	Pipelining in 1st-order IIR digital filters
	Look-ahead pipelining for 1st-order IIR filters
	Look-ahead pipelining with power-of-2 decomposition
	Look-ahead pipelining with general decomposition

	Pipelining in Higer-order IIR digital filters
	Clustered look-ahead pipelining
	Stable clustered look-ahead filter design
	Scattered look-ahead pipelining
	Scattered look-ahead pipelining with power-of-2 decomposition
	Scattered look-ahead pipelining with general decomposition
	Constrained filter design techinques

	Parallel processing for IIR filters
	Exercise

