
S-38.220
Postgraduate Course on Signal Processing in

Communications,
FALL - 99

Numeric strength reduction

Giedrius ZAVADSKIS

Email: giedrzav@cc.hut.fi

Date: 15.11.1999

2

1. INTRODUCTION ...4

2. CANONIC SIGNED DIGIT...4

3. SUBEXPRESSION ELIMINATION...4

4. LINEAR TRANSFORMATIONS..6

5. POLYNOMIAL EVALUATION ...8

6. SUBEXPRESSION SHARING IN DIGITAL FILTERS...9

7. TWO MOST COMMON SUBEXPRESSIONS IN CSD REPRESENTATION....................11

8. CONCLUSIONS..12

3

ABSTRACT

The following paper gives an introduction to numerical strength reduction. The latter
is the last step in algorithmic strength reduction – t he optimization of binary
arithmetic's in DSP computations. The most time and power consuming operation in
DSP is multiplication. Without regard of being implemented in software or hardware,
multiplication is usually divided into simpler shift and add operation. Number
strength reduction technique addresses the simplification of this operation. The
multiplication optimization method known as subexpression elimination is presented
in the paper. Also a concept of canonic signed digit is introduced.

4

1. INTRODUCTION

Most DSP algorithms are combination of delays, adders and multipliers. The latter are
composed of shift-registers and adders that are distributed in time or in space. The
numerical strength reduction method uses tricks to share the results of addition
between several multiplications.

2. CANONIC SIGNED DIGIT

Consider a binary number 1111. Multiplication by this number requires 3 shifts and 3
additions. However this number may be expressed as 1000 – 0001. In this case 3
shifts and one subtraction are required. The number may be expressed in a different
way:

11000
Here the minus above the last digit signifies subtraction.
The above method of displaying numbers is known as Canonic signed digit (CSD).
In general CSD is a set of { –1, 0, 1}. The property of CSD is that represents binary
numbers with minimum count of non-zero digits. Since only non-zero elements create
additions in multiplication operation, CSD is an efficient way of number
representation for multiplication operations.
However CSD arithmetical units are more complicate that those for ordinary binary
applications.

3. SUBEXPRESSION ELIMINATION

When one variable is multiplied by a set of constants, usually these constants may be
expressed one by another by simple arithmetical operations. Therefore expressing
constant through other ones lead to reduced number of operations. The main method
for simplification of constant multiplication is Subexpression elimination. This is a
numerical transformation of the constant multiplications that can lead to efficient
hardware implementation in terms of area, speed and power.
The main point of subexpression elimination is to find common structures in set of
constant and to reuse them. Let ’ s look at one example.
Consider that a variable must be multiplied by a= 13 and b=27. Then by converting
the constants as binary numbers, as shown in table 3-1, we can see that 1st and 4th bits
are the same for both constants. Therefore multiplication with common term 1001 has
to be done once.

Table 3-1: Example 3-1. [1]
Constant Decimal Binary

a 13 001101
b 27 011011

Furthermore be the common term happens in constant b twice: once with the shift 1
and another with the no shift, i.e.:

b x x = (x x 1001) << 1+ (x x 1001)

5

here <<1 means one shift in the register.

In the similar manner multiplication a becomes: a x x = x x 1001 + x x 0100
If the above given algorithm is used, the required number of shifts is 3 and required
number of additions is also 3.
If conventional multiplication is used then the total number of addition is 5 shift and 5
adds.

As and alternative, just by inspecting constants a and b in either decimal or binary
form, that b=2a +1. This scheme also gives total number of 3 additions and 3 shifts.

The basic algorithm consists of 5 steps.
Step 1. All the constants are expressed in binary form. Signed, unsigned and CSD
representation are possible.
Step 2. The non-zero bit matches are determined between all constant pairs.
Step 3. The best match, with the maximum number of identical bits, is chosen.
Step 4. The identical bits or so-called ‘ redundancy ’ are removed from all
constants.
Step 5. Continue with the step 2, for the new set of constants, until no improvement is
achieved.

An example of the algorithm follows:
Consider variable multiplication by a set of constants {237, 182, 93}.
The constants are expressed in binary as it is shown in table 3-2. The number of bit
matches is also shown in the table. We can see that the greatest match is between
constants a and c. Therefore this match ‘ 01001101 ’ is being removed from the
constants a and c.

Table 3-2: Example 3-2. [1]
Constant Decimal Binary Match

a 237 11101101 - 3 4
b 182 10110110 3 - 2
c 93 01011101 4 2 -

Then a ’ =11101101-01001101 = 10100000 and
c' = 01011101-01001101 = 00010000

These results are displayed in table 3-3. By inspecting the table one can see, that there
are still 2 matches left among a ’ and b. This match ‘ 10100000 ’ is remove in the
second iteration.

Table 3-3: Example 3-2. First iteration
Constant Binary Match

a ’ 10100000 - 2 0
b 10110110 2 - 1
c' 00010000 0 1 -

redun(a,c) 01001101 - - -

After second iteration the constant a ’ ’ and b ’ look like this:

a ’ ’ =10100000-10100000 = 00000000 and

6

b ’ = 10110110-10100000 = 00010110

The results are summarized in Table 3-4. There is one match between b and c but
eventually it will not decrease number of operations, therefore the end of
subexpression elimination has been reached. All three constants may be expressed in
the following way:

a= redun(a,c) + redun(a,b)
b= redun(a,b) + 00010110
c= redun(a,c) + 00010000

Table 3-4: Example 3-2. Second iteration
Constant Binary

a ’ ’ 00000000
b ’ 00010110
c' 00010000

redun(a,c) 01001101
redun(a,b) 10100000

The complexity analysis of the problem is shown in table 3-5.

Table 3-4: Example 3-2. Complexity analysis
Constant without SE with SE

a 5 shifts + 5 adds 1 add
b 5 shifts + 4 adds 3 shifts + 3 add
c 4 shifts + 4 adds 1 shift + 1 add

redun(a,c) - 3 shifts + 3 adds
redun(a,b) - 2 shifts + 1 add

Total 14 shifts + 13 adds 9 shifts + 9 adds

As a result of the application of subexpression elimination 5 shifts and 4 additions
have been saved, what is over ¼.

4. LINEAR TRANSFORMATIONS

Consider a general form of linear transformation that is done by a matrix
multiplication:

xTy ∗=
Here y is a output vector of length m, x is an input vector of length n, while T is a
matrix of the seize m x n. If T is a matrix of constant then each member of output
vector may be expressed by the following formula

∑
=

==
n

j
jiji mixty

1

,...,1,

Since it is constant multiplication, subexpression elimination can be applied. In this
occasion it consists of 3 steps.
Step 1 is the algorithm described in previous chapter applied to constants in the
columns of the matrix T.

7

In the Step 2 unique products with respect to x1, x2,…,xn are determined. The output
values of y1, y2,…,ym are constructed as the sums of these products.
Step 3 is devoted for minimization of addition number for obtaining output values.
The algorithm is similar to the one discussed in chapter 3.
An example of the substructure elimination in linear transformations is discussed
further.
Example 4-1. Consider the following transform matrix:

=

117117

15285

1371112

13287

T

Step 1. Each element in the column vector x of variable is multiplied by the constants
in the respective column of the transform matrix T. Therefore the subexpression
elimination has to be done only on the transform matrix columns. The result is shown
in table 5-1.

Table 4-1: Subexpressions required for each column.
Column 1 Column 2 Column 3 Column 4

0101
0010
1100

1000
1011

0010
0111

1001
0100
0010

* x1 * x2 * x3 * x4

Step 2. Constants of each column are multiplied by the variable x from respective
row. The unique multiplications are the following:

p1=0101 x x1; p2=0010 x x1; p3=1100 x x1;
p4=1000 x x2; p5=1010 x x2;
p6=0010 x x3; p7=0111 x x3;
p8=1001 x x4; p9=0100 x x4; p10=0010 x x4;

Then the output value become:
y1 = p1 + p2 + p4 + p6 + p8 + p9;
y2 = p3 + p5 + p7 + p8 + p9;
y3 = p1 + p4 + p6 + p8 + p9+ p10;
y4 = p1 + p2 + p5 + p7 + p8 + p10;

Step 3. The sums given above are simplified in this step. In order to simplify the
operation each output term is express in the binary format, where positions in the
word mean the presence or absence of the multiplicative term.

y1 = 1101010110; y2 = 0010101110;
y3 = 1001010111; y4 = 1100101101;

From the above expression it may be seen, that there are 5 matches between y1 and y3,
while y2 and y4 have 3 bits in common. After evaluating these matches, output terms
may be expressed:

y1 = p2 + (p1 + p4 + p6 + p8 + p9);
y2 = p3 + p9 + (p5 + p7 + p8);
y3 = (p1 + p4 + p6 + p8 + p9) + p10;

8

y4 = p1 + p2 + p10+ (p5 + p7 + p8);

5. POLYNOMIAL EVALUATION

Another area for application of subexpression elimination is polynomial
multiplication. Consider the following polynomial:

x11 + x9 + x4 + x2 +x

The straightforward evaluation of the polynomial will require:

10 + 8 +3 + 1 = 22 multiplications

However term x4 may be expressed as x4 = x2 * x2. Usage of this equation leads to
saving of 2 multiplications.
A more general technique is to express exponent value in the binary format, as the
following:

11 = 1011; 9=1001; 4=0100; 2=0010; 1=0001.

Then these terms can be expressed as a multiplication of
2nx , where n denotes

position of bit in exponent expressed in binary format. For
2nx the following equality

holds:

 () ()222 11 * −−= nnn xxx ,

i.e. x2 =x *x; x4=x2 * x2; x8=x4*x4.

Then the original polynomial can be rewritten in this way:

(x8 * x) * x2 + (x8 * x) + x4 + x2 + x

If this scheme is used, the number of multiplications have been reduced to 5!

9

6. SUBEXPRESSION SHARING IN DIGITAL FILTERS

Consider FIR filter implementation shown in figure 5-1. This type of filter structure is
known as transposed direct-form or data-broadcast. The property of this filter is that
input value is fed in multipliers at the same instant. Therefore it is possible to apply
subexpression elimination on this instance.

Figure 6-1: Data-broadcast structure of FIR filter [1]

The general algorithm is composed of 6 steps.
In Step 1 a table is constructed. The rows in the table denote delays, while the filter
coefficients digits are distributed over the columns. In the column 0 the most
significant bits are entered. Only non-zero digits are entered into the table.
In the same step 'best' subexpressions of size 2 are found. The best subexpression is
chosen by cost function, that is mostly influenced by number of occurances.
In Step 2 each occurrence of subexpression is removed and replaced by value 2 or –
2 in the upper-left cell of the subexpression. Positive value means addition, while the
negative value means subtraction in the higher level of subexpression elimination.
Step 3 is devoted for making of records subexpressions eliminated.
At Step 4 it is checked if any subexpression can be eliminated. If so, it is returned to
Step 2, otherwise it continues with Step 5.
In Step 5 the complete definition of the filter is written down.
There might occur subexpression definitions with negative shifts. These shifts are
eliminated in Step 6.
To explain the algorithm in detail an example is considered.
Example 6-1. There is a 4-tap FIR filter given with the following equation:

)4(*00010000010.1)2(*00100000101.0

)1(*10101010001.0)(*00101000001.1)(

−+−+
−+=

nxnx

nxnxny

Step 1. These values are written down in the table 6-1. The matches are also shown.

Table 6-1: Iteration 1. [1]
0 1 2 3 4 5 6 7 8 9 10 11
-1 1 1 1

-1 -1 -1 -1 -1
-1 1 1

1 1 -1

10

Step 2. The subexpression are removed, as shown in table 6-2. There is also shown
the subexpressions that will be removed in the next iteration.

Table 6-2: Iteration 1 with subexpression eliminated. [1]
0 1 2 3 4 5 6 7 8 9 10 11
-1 2 1 2

-2 -1 -2
-2

1 -1

Step 3. The subexpression removed is recorded:
x2=x1 - x1[-1] >> (-1)

Negative shift may happen in this step. They are removed in the further steps

Step 4. Another iteration is done, and it is returned to step 2. These are the results of
the second iteration are shown below.

Table 6-3: Results of iteration 2. [1]
0 1 2 3 4 5 6 7 8 9 10 11
-1 3 2

-3 -2
-2

1 -1

x3=x2 + x1 >> 2

Step 5. The filter definition is written down:

x2=x1 - x1[-1] >> (-1)
x3=x2 + x1 >> 2
y=-x1 + x3>>2 + x2>>10 - x3[-1]>>5 - x2[-1]>>11
-x2[-2]>>1 +x1[-3]>>6 – x1[-3]>>8

Step 6. Negative shifts have to be removed. The variables that have the negative shift
are flipped to create positive shift:

x2=x1 - x1[-1] >> (-1) ⇒ x2=x1>>1 - x1[-1]

Then all the other equations are modified due to this change:
x3=x2 + x1 >> 3
y=-x1 + x3>>1 + x2>>9 - x3[-1]>>4 - x2[-1]>>10
-x2[-2] +x1[-3]>>6 – x1[-3]>>8

The filter structure is shown in fig.6-2.

11

2 -6 2 -8

+

+

2 -1

D +

2 -1 0

D D+ +

2 -2

+

- -

x

+

-

2 -9

+

+

2 -1

2 -4

-

y

Figure 6-2: Structure of FIR filter from example 6-1[1]

7. TWO MOST COMMON SUBEXPRESSIONS IN CSD REPRESENTATION

ince CSD have the minimum number of non-zero bits they have an advantage in
multiplications done by digital filters. It can be shown that statistically the most
common subexpressions are x-x>>2 and x+x>>2. These subexpressions correspond to
bit patterns 110 and 101.
Asymptotically CSD of the length W may be divided into W/18+1 pairs of 110 ,
W/18+1 pairs of 101, and W/9+1 isolated positive – 1 and negative – 1 bits.
Therefore any FIR filter can be built only out of subexpressions 110 , 101 and 1. This
allow implementation of the digital filter with three buses as shown in fig.7.1.

Figure 7-1: FIR filter implementation for terms 110 and 101[1]

In this structure 110 and 101 precomputed beforehand. These values are put to 2
buses of total 3. The third is devoted for x value. To get value to be stored in the
delay element 2 addition are required. The input to adders are shifted
appropriately.

12

8. CONCLUSIONS

The paper considers numerical strength reduction algorithms – the last step in
algorithmic strength reduction processes. The main method for this is subexpression
elimination. The essence of this method is to find the common structure, compute
them once and reuse at each next occurrence. Application in linear transforms,
polynomial evaluation and FIR data-broadcast structures have been considered.

13

REFERENCES

[1] K.K. Parhi, VLSI Digital Signal Processing: NUMERICAL STRENGTH
REDUCTION, Chap 15, J. Wiley &Sons, 1999

[2] M.Potkonjak, M.B Srivastava and A.P.Chandrakasan, "Multiple constant
multiplication: efficient and versatile framework and algorithms for exploring
common subexpression elimination," IEEE trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 15, no. 2., pp. 151-165, Feb. 1996

[3] A.Chatterjee, R.K. Roy, and M.A.d'Abreu, "Greedy hardware optimization for
linear digital circuits using number splitting and refactoriztion," IEEE Trans. on
VLSI systems, vol.1., no.4, pp. 423-431, Dec. 1993

