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ABSTRACT

This paper presents formulations of the retiming problem, and, based on these
formulations, some techniques are introduced to determine the solutions to these
problems. We also show that the problem of determining an equivalent circuit with
minimum state (total number of registers) is the linear-programming dual of a
minimum-cost flow problem, and hence can also be solved efficiently. The techniques
are general in that many other constraints can be handled within the graph-theoretic
framework
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1. INTRODUCTION

Retiming is a technique used to move delay elements around in a circuit without
changing its functionality i.e. the input/output characteristics of the circuit. One effect
of changing the location of the delays is that combinatorial rippling can be reduced,
allowing the circuit to be clocked at higher rate. Reducing combinatorial rippling also
decreases the dynamic power dissipation in the circuit and allows the circuit to be
operated at with the lower supply voltage, both of which lead to low-power
implementations. Another effect of changing the locations of delays is that the
number of number of delay elements required can be reduced, resulting in the area-
efficient implementation. Retiming and scheduling are important tools used to map
behavioral descriptions of algorithms to physical realizations. These tools are used
during the design of software for programmable digital signal processors (DSP's).
Retiming and time scheduling operate directly on a behavioral description of the
algorithm, such as a data-flow graph (DFG). Scheduling consists of assigning
execution times to the operations in a DFG such that the precedence constraints of the
DFG are not violated. Unlike pipelining, retiming does not increase circuit latency.

Due to the recent demand for low-power digital circuits in portable devices, some
recent work has focused on retiming for power minimization. An approach based on
circuit theory can be used to generate all retiming solutions for a DFG.

2. PRELIMINARIES

Here we introduce the notations and terminology needed in the paper.

Critical path is defined as to be the path with the longest computational time among
all paths that contain zero delays. Folding: Is the process of executing several
algorithm operations on a single hardware module. Scheduling: Is the process of
determining at which time units a given algorithm operation is to be executed in
hardware. The computation time of the critical path, is the path with the longest
computation time among all paths with no delays.

We can view circuit abstractly as a network of functional elements and globally
clocked registers. Functional elements provide the computational power of the circuit.
Our model is not concerned with the level of complexity of the functional elements.
Each element has associated propagation delay.

We model a circuit as &nite, rooted vertex-weightededge-weighteddirected
multigraph G :<V,E,vh,d,w> (thus, we shall simply say "graph" or, morefrequently,

"circuit"). The verticesV of the graph model the functional elements of the circuit.
Each vertexvV is weighted with numerical its numerigadopagation delayd(v).

A root vertexv, , called the host, is included to represent the interface with the

external world, and it is given zero propagation delay. dinected edgeE of the

graph model interconnection between functional element and is weighted with a
register count w(e). The register count is the number of registers along the
connection. Between two vertices, there may be multiple edges with different register
counts.



To avoid confusion betwearertex-weight functionse. d andedge-weight functions

l.e. w, we shall use the term weight fedge-weight functionsnly. We shall refer to

the particularedge-weightsw(e) of a circuit asregister countsif e is an edge in a
graph that goes from vertax to vertexv, we shall denote as[If - v. In the event

that the identity of either the head or the tail of an edge is unimportant, we shall use
the symbol ?, as in[(1f - .?

For a graphG , we shall view a pattp in G as a sequence of vertices and edges. A

simple path contains no vertex twice, and therefore the number of vertices exceeds the
number of edges by exactly one. We extend the register count fumctiora natural
way from single edges to arbitrary paths. For  anyath

p=v, 0% v, % - ...0 % - v,, we define thepath weightas the sum of the
weights of the edges of the path:

Equation 1
w(p) = Z w(e)

Similarly, we extend theropagation delayd functionto simple paths. For any
simple path p=v, 0® - v, I? - ...0 & - v, , we define thgpath delayas the sum
of the delays of the vertices of the path:

Equation 2
d(p) = Zd(vi)

In order that a grapl® = <V, E,d,w> have well-defined physical meaning as a circuit,

we place nonnegativity restrictions on tpepagation delaysd(v) and theregister
countsw(e):

D1. The propagation delag(v) is nonnegative for each vertexiV .
WL1. The register countv(e) is a nonnegative integer for each edge E .

We also impose the restriction that there be no directed cycles of zero weight:

W2.In any directed cycle o& , there is some edge with (strictly) positive
register count

We definesynchronous circuiés a circuit that satisfies Conditions D1, W1, and W2.
The reason for including Condition W2 is that whenever an esldetween two
vertices uand vhas zero weight, a signal entering vertegan ripple unhindered
through vertexuand subsequently through vertex If the rippling can feedback
upon itself, problems of asynchronous latching, oscillation, and race condition can
arise. By prohibiting zero-weight cycles, Condition W2 prevents these problems from
occurring, provided that system clock runs slowly enough to allow the outputs of all
the functional elements to settle between each two consecutive ticks.



For any synchronous circui , we define the (minimum feasible) clock pericdG )

as the maximum amount of propagation delay through which any signal must ripple
between clock ticks. Condition W2 guarantees thatkbek periodis well defined by
the equation

Equation 3
(G) =max{ d(p) | w(p) = 0}

Figurel-1

for the circuit graph in Fig. 1 the clock period is 24, which corresponds to the sum of
the propagation delays along the pat) - v, —» v - V,.

The computation time of the pats:
Equation 4

t(p)=2t(w)

A cycle is a closed patlp O v, M- v, 0% - .0~ v, 0w Vo
The weight of the cycl€is:

Equation 5
w(c) = Z w(e)

and the delay of the cycle is:

Equation 6

k-1

t©)= 3 tw)



2.1 Algorithm CP (Compute the clock period of a circuit)

This algorithm computes theclock period PG for asynchronous circuit
G=(V,Ev,,d,w)

1. Let Go be the subgraph of G that contains precisely those e8gith
register count¥(€) =0
2. by Condition WZ,GO is acyclic. Perform a topological sort 8?? totally

G

ordering its vertices so that if there is an edge from véeftax ¢, then

Uprecedes’in the total order.
3. Go through the vertices in the order defined by the topological sort. On

visiting each verte¥, compute the quantitQ(V) as follows:
a. If there is no incoming edge ¥ set2(v) < d(v).

b. Otherwise, setA(X) —dv)+ ma>{A(u)| UllF- v and w(e) :0}

4. The clock perioéD(G) is M&Xov AW) :

The algorithm works because for each vertéx the quantity A(V)equals the
maximum sum 9(P)of vertex delays along any zero-weight directed p&m

G such that? I’ - V. The running time OUEN)

3. RETIMING

3.1 Basics
The basic retiming equation for the edge
1) 1)
y(n) {) y(n)
+ >
2D
2D a
D 2)
b

(2) (2)

Figure3-1Two versions of an IIR filter. The computation times are shown in
parentheses.



Consider the IIR filter in Fig. 3-1(a). This filter is described by

Equation 7
w(n) =ay(n—1) +by(n-2)
y(n) =w(n-1) +x(n)
y(n) =ay(n-2) +by(n—-3) + x(n)

The filter in Fig. 3-1(b) is described by

Equation 8
w,(n) =ay(n-1)
w,(n) =by(n-2)
y(n) =w (=1 +w,(n-1) +x(n)
y(n) =ay(n-2) +by(n-3) +x(n)

Although the filters in Fig. 3-1(a) and Fig. 3-1(b) have delays at different locations,
these filters have the same input/output characteristics. These filters can be derived
from one another using retiming.

Retiming has many applications in synchronous circuit design. These applications
include reducing the clock period of the circuit, reducing the number of registers in
the circuit, reducing the power consumption of the circuit, increasing the clock rate of
a circuit by reducing the computation time of the critical path, and logical synthesis.

Retiming can be used to increase the clock rate of a circuit by reducing the
computation time of the critical path. The computation time of the critical path is the
lower bound on the clock period of the circuit. The critical path of the filter in Fig. 3-
1(a) passes through | multiplier and 1 adder and has a computational time of 3 u.t., so
this filter cannot be clocked with a clock period less than 3 u.t. The retimed filter in
Fig. 3-1(b) has a critical path that passes through 2 adders and has a computation time
of 2 u.t. By retiming the filter in Fig. 3-1(a) to obtain the filter in Fig. 3-1(b), the clock
period has been reduced from 3 u.t. to 2 u.t., or by 33%.

Retiming can be used to reduce the number of registers in a circuit. the filter in Fig. 3-
1(a) uses 4 registers while the filter in Fig. 3-1(b) uses 5 registers. Since retiming can
affect the clock period and the number of registers, it is sometimes desirable to take
both of these parameters into account.

Retiming can be used to reduce the power consumption of a circuit by reducing
switching, which can lead to dynamic power dissipation in static CMOS circuit.
Placing registers at the inputs of nodes with large capacitances can reduce the
switching activities at these nodes, which can lead to low-power solutions .

3.1.1 Properties



A retimed solution is characterized by a valliy) (this values are obtained by
solving the linear programming equation which is formed by linear inequalities in

eqn. 15) for each nodéin the graph. Let™® denote the weight if the edd&n the
original graphG , and let" (€ denote the weight of the ed§ein the retimed graph

G The weight of the edged IIF - Vin the retimed graph is computed from the
weight of the edge in the original graph using

Equation 9
W, (€) = w(e) +r(v) —r(u)

For example, the edggL" — 2 in the retimed DFG contains

Equation 10
W, (3IF - 2) =w(BIF - 2)+r(2)-r(3)

w (3[F-2)=0+1-0=1

delay, and the edgé" - 1contains

Equation 11
w2 -1) =wIF-D+r@)-r(2)
w, (20 -1 =1+0-1=0

delays.

r)=0,r(2=-1r(3)=0,andr(4) =0;g

The solution infeasible because, for

example, the edgd ¥ - 2in the retimed system contains

Equation 12
w,(3MF - 2)=w(BIF- 2)+r(2)-r (3
w,(30F-2)=0+(-)-0=-1

delays.

Several properties of retiming can be derived from the retiming equation (6).

Property 3.1.1The weight of the retimed paﬁ]: v, O - v, (1% - ...0 P Ve
given by (P) =W(P) +1(v,) =1 (V).

Theretimed path weight:



Equation 13

k-1

W (p)=) w(g)

1=
k-1

=) (W) *+r (Vi) —r(v))

= W)+ (3 1) =3 1)
=W(p) +r(v) —r(v).

for example, the patt? ~ 1 - 3in Fig. 4.2(a) has 2 delays, and this path in the
retimed DFG in Fig. 4.2(b) hat (3 ~1(2) =2+0-1=1qg5y

Property 3.1.2Retiming does not change the number of delays in a cycle.

This is a special case of property 3.1.1 whérde: The weight of
the retimed cyctas (©) =w(e) +1 (Vo) =1 (Vo) =W(C). |, Fig. 4.2,
the cycle~ 3 -~ 2 — lcontains 2 delays in the unretimed and

retimed DFGs, and the cyele 4 - 2 - lcontains 3 delays in the
unretimed and retimed DFGs.

Property 3.1.3Retiming does not alter the iteration bound in a DFG.

Property 3.1.4Adding the constant value j to the retiming value of each node does
not change the mapping the mapping #oto G..
After replacing "Mwith TM*1  for each node, the weight of the

retimed edge$! IF - Vin G is:

Equation 14
W, (€) =w(e) +(r(v) +j) —(r(u) + j) =w(e) +r(v) - r(u)

which is the same for any value j (including j = 0). By adding, for example, the
constant -10 to the retiming valueb® =0r(2)=1r(3=0andr(4)=0

retiming values O =~101(2)=-9,r(3 =-10, and r(4) =-10 4, pe used to obtain
the retimed DFG in Fig. 4.2(b) from the DFG in Fig. 4.2(a).

10



4. DETERMINING AN OPTIONAL RETIMING

Here we presents a polynomial-time algorithm for relocating registers within a circuit
SO0 as to maximize the performance of the circuit. Specifically we'll solve the

(v, E,v,.d,w)

following problem: Given a circuit grapﬁ - , find a legal retiming’ of

G such that the clock perioa)(Gr)of the retimed circui®r is as small as possible.
The solution of this problem depends on some basic results from combinatorial
optimization and graph theory. In particular, we rely on the fact that the following
linear programming problem can be solved efficiently.

Problem LP. Let Sbe a set ofMlinear inequalities of the form

Equation 15
r=r, <k
on the unknown&' "2:-+Tn  where theKJ' are given real constants. Determine

feasible values for the unknowﬁs or determine that no such values exist.
This is done using the following procedure:
1. Draw a constraint graph.

Draw the nodé for each of theN variables'i+! =12+ N-

b. Draw the nodeN +1.

c. For each. inequalit;? -hs k, draw the edgej ~ Ifrom node | to node
I with lengthK .

d. For each nodd, ' =12--Ngraw the edgeN +1 - ifrom the node
N +1to the node with length O.

o

2. Solve using a shortest path algorithm.
a. The system of inequality has a solution iff the constraint graph contains
no negative cycles.

b. If a solution exists, one solution is wheérés the minimum-length path
from the nodeN *1to the nodé .

When solving systems of inequalities, there may be multiple inequalities with
identical left-hand sides, which can lead to parallel edges in the Step 1(c). For

example the two inequaliie§® ~1(2)<9andr@)-r(2<7 \oyd lead to two
edges from node 2 to node 1 with weights 9 and 7. When this happens, the most
restrictive of these inequalities should be selected to avoid drawing parallel edges in
Stepl(c).

11



To demonstrate the just described algorithm, the value#/(@fv) and D(u,v)are
computed for the DFG in Fig. 4-1(a). In the first stdp,, = an@ n=4,so

M =8.The new graphG’(found in the second step) is shown in Fig 4-1(c). The
solution to the all-pairs shortest path problem &can be found using the Floyd-
Warshall algorithm. The solution found in the third step , and the values of
W(u,v) and D(u,Vv) (found in the final step), are given in the Table 1-1.

(1)

Figure 4-1 (a) A DFG. (b) The retimed DFG obtained using
r)=0,r(2)=14r(3) =0, and r(4) =0.(c)The graphG' used to
computeW (u,v) and D(u,v) for the DFG in (a).

Table 1-1:
Sw |1 2 3 4 wuv) |1]123 |4 puv) | 12|34
1 12 | 5 7 15
2 7 12 | 14 | 22 1 0/1{1 |3 1 1/4] 3|3
3 5 2 1121 20 2 1/0[2 |3 2 21114 4
4 5 2 | 121 20 3 1/0/0 ]| 3 3 41326
4 1/0[2 |0 4 413|6| 2

The tables above shows the values of the funcié(s v) and D(u, V) for
the GDF in Fig. 4-The quantityV(u,v) is thenumber of registers on a
minimum-weight patfrom U to v, and P(UVY) is themaximum
propagation delaylong any suchritical path. The distinct entries in the

table for D include all possible clock period less th@iff

W (U, V) > OyhereverPUv) > €.

Any such system of linear inequalities can be satisfied or determined to be
inconsistent if°(MM time by the Bellman-Ford algorithm.

12



4.1 Retiming Techniques
4.1.1 Cutset Retiming and Pipelining

A cutset is a set of edges that can be removed from the graph to creat two
disconnected subgraphs. Cutset retiming only affects the weights of the edges in

the cutset. If the two disconnected subgraphs are lati2I&id GZ, then cutset
retiming consists of addind delays to each edge frof 10 Gz and removing

K delays from each edge froffe ©© Gi. For example, a cutset is shown with a
dashed line in Fig. 4-1(a). The 3 edges in the cutsefaté-> ~ 2 andl - 4.
The two subgraphg1 and G, tqng by removing the 3 edges in the cutset are

shown in Fig. 4-1(b). Fot‘:l the result of cutset retiming is shown in Fig.

Figure 4-1 (a) unretimed DFG with a cutset shown as a dashed line. (b) The 2
graphsG,andG, formed by removing the edges in the cutset. (c) The retimed
graph found using cutset retiming wikh=1.

4.4(c). The edges frorff1 10 G, are3 -~ 2and3 - 2andl - 4, 5n4 one delay is
added to each of these edges. The edge fgio G, is2 - 1 and pne delay is
subtracted from this edge.

Cutset retiming is a special case of retiming where each node in the subgraph
G, has the retiming valug and each node in the subgra@hhas the retiming
value j +k. The value ofj is unimportant due to Property 4.2.4. For example, in
Fig. 4.4, using the valueg=0 and k = rdsults in

r=0,r(2)=2r(3)=0, and r(4) =1, and this maps the DFG in Fig. 4-1(a) to
the DFG in Fig. 4-1(c). Any value of results in the retimed graph. For
feasibility of the retimed graphw. (e) > rust hold for all edgeein G,. Let

g ,represent an edge frof®, to G, and lete,,represent an edge fro®,toG

13



Since cutset retiming addsdelays to each edge fro@® toG,,w, (e ,) = rlust
hold. similarly, sincek delays are subtracted from each edggrom
G,t0G,,w, (e,,) 200 w(e,;) —k=0must hold. Combining these two
inequalities and considering all of the edges in the cutset result in

Equation 16

- Glg}i PGZ{W(e)} <ks< M i [1Gl{w(e)}

as the condition otk for cutset retiming to give a feasible solution. In Fig. 4.4,
minGlDiGZ{W(e)} =min{0,2} =0 and minGZDiGl{w(e)} =1, so0< k<1 must

hold. Sincek =0does nothingk =1is the only value ok that results in a feasible
graph, and this graph is shown in Fig. 4-1(c).

Figure4-2 (a) The unretimed DFG with a cutset shown as a dashed line. (b) The 2
graphsG, and G, formed by removing the edges in the cutset. (c) The graph

obtained by cutset retiming witkhi= 2.

14



Pipelining is a special case of cutset retiming where there are no edges in thw
cutset from the subgrap®, to the subgrapl, , i.e. pipelining applies to graphs
without loops. these cutsets are referred to as feed-forward cutsets. The feed-
forward cutset shown in Fig. 4-2(a) divides the graph into the two subgraphs
shown in Fig. 4-2(b). All three of the edges in the cutset go &m0 G, and ,
performing cutset retiming witk = 2results in 2 additional delays on each edge
in the cutset, resulting in the retimed (or pipelined, in this case) graph in Fig. 4-
2(c). Tis demonstrates that the pipelining can be viewed as a special case of
retiming.

Cutset retiming is often used in combination vBlbw-downThe procedure is to
first replace each delay in the DFG with delays to create aN — Slowversion

of the DFG and the to perform cutset retiming on the SlowDFG. Note that in

an N - Slowsystem,N —1null operations (or 0 samples) must be interleaved after
each useful signal sample to preserve the functionality of the algorithm.

For example, consider the 100-stage lattice filter in Fig. 4-3(a), which has a
critical path of 101 adders and 2 multipliers. Assuming that addition and
multiplication takes 1 and 2 u.t., respectively, the minimum sample period is
(101)(2)+(2)(2)=105 u.t. The - Slowversion of this circuit is shown in Fig. 4-
3(b), and cutset retiming can be used to obtain the circuit in Fig. 4-3(c).

The critical path of the retimed circuit has 2 adders and 2 multipliers and has
computation timw (2)(1)+(2)(2)=6 u.t. Since this circuiis Slow, the minimum
sample period is (2)(6)=12 u.t. In this examp®&low—downand cutset retiming
reduce the sample period from 102 u.t. to 12 u.t.

Stage 100

15



Figure 4-3 In each of the 3 filters, the critical path is shown woth the dotted lines.
(a) A 100-Stage lattice filter with minimum sample period of 105 u.t. (b) The
2-slow version of the circuit. (c) A retimed vertion of the 2-slow circuit.

To summaries, cutset retiming is a special case of retiming, and pipelining is a
special case of cutset retiming. cutset and pipelining are graphical techniques that
can be used to perform complex retiming operations in a simple manner.

4.1.2 Retiming for Clock Period Minimization

Here we present a retiming algorithm for minimizing the clock period of a
synchronous circuit. For a circu@, the minimum feasible clock period is the
computation time of the critical path, which is the path with the longest
computation time among all paths with no delays. Mathematicallynithienum
feasible clock period®(G),is defined as:

Equation 17

®(G) =max t(p): w(p) =0}

The algorithm is concerned with finding a retiming solutigsuch that
®(G, ) < P(G,)for any other retiming solution

The two quantitie$V(u,v) and D(u,v) are use in this algorithm. The quantity
W(u,v) is theminimum number of registers on any pattm nodeu to nodev
andD(u,v) is themaximum computation time among all pafttesn u to v with
weight W(u,v) Formally:

Equation 18

W(u,v) = min{ w(p):ull?f - v}
D(u,v) =maX{ t(p): uCTP - v and w(p) =W(u,v)}

The algorithm for optimizing the clock period of a circuit is based on an alternate
characterization of clock period in terms of the two quantities above.

The following algorithm can be used to compW¢éu,v) and D(u,Vv).

16



1. Let M =t ,n, wheret_,, is themaximum computation time of the node

max” !

G andn is the number of nodin G.

2. From a new grapié’ which is the same & except the edge weights are
replaced byw'(e) = Mw(e) —t(u) for all edgesu[IF - v .

3. Solve the all-pairs shortest path problem@nLet S, be the shortest path
from u to v.

4. If uzv,thenW(u,v)= é‘;ﬂﬂgand D(u,v) =M (u,v) - S, +t(v).If u=v,then

W(u,v) =0 and W(u,v) =t(u).

The value of[x]is the ceiling ofx, which is the smallest integer greater than or
equal tox .

The values oW (u,v) and D(u,v )are used to determine if there is a retiming
solution that can achieve a desired clock period. Given a desired clock period
there is a feasible retiming solutionsuch that®(G, ) < cif the following
constraints hold:

1. (fanout constrainty (u) —r(v) < w(e for every edges [IFf - v of G, and

2. (critical path constrainty (u) —r(v) <W(u,v) — for all verticesu,vsuch that
D(u,v) >c.

The feasibility constraint forces the number of delays on each edge in the retimed
graph to be nonnegative, and the critical path constraint enfdr@p< c If

W(u,v) +r(v) —r(u) 21 must hold for the critical path to have computation time
less than o equal to This leads to the critical path constraint.

4.1.3 Retiming Register Minimization

Here we present the algorithm for finding a retiming solution that uses the

minimum number of registers while satisfying theck period constraintif a

node has several output edges carrying the same signal, the number of registers
required to implement these edges is the maximum number of registers on any one
of the edges. This is demonstrated in Fig. 4-4(a) uses 1+3+7=11 registers with the
clever implementation in Fig. 4-4(b) uses max(1,3,7)=7 registers. Using this
concept, the number of registers required to implement the output edges of the
nodevin the retimed graph is:

Equation 19
R, = max{w, (e)}

17



and the total register cost in the retimed circu€BST= z R,

o () [ ()
3D —»@ @—» D 2D 4D @
BB @

:

—>
: (a) (b)
3D . . . :
Flg -4 (a) implementation using 1+3+7=11 registers. (b) Fanout
[ entation using max(1,3,7)=7 registers.
—» 7D

TheTormulation o etiming to minimize the number of registers under the
constraint that the clock period is not greater tham

9

Equation 20
COST= Z R,

subject to:-
1. (fanout constraintR, = w. (e fpr all vand all edgev [IFf-? .
2. (feasibility constraint) (u) —r(v) < w(e Yor every edgau [(IFf - v .

3. (clock period constraint)(u) —r(v) <W(u,v) —1for all verticesu,vsuch that

D(u,v) >c.

The fanout constraint makes sure tRat=max . {w, (e)}.

18
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While this formulation of retiming indeed minimizes the number of registers
under a clock period constraint, it is not in a form that can be solved using linear
programming techniques because some solutions may not be integers. To get the
formulation in such a form, a "gadget" is used to represent nodes with multiple
output edges. This gadget is shown in Fig. 4.12. Fig. 4-5(a) shows a fanout node
with k output edges. The gadget in fig 4.12(b) is used to model the fanout node.
Each of thek edgese ,1<i <k, has an associated weighte which is known

from the DFG. The nodéis a dummy node with zero computation time

(t(G) =0), and the edge§ 1<i<k, are dummy edges introduced so the

retiming for register minimization problem can be modeled as a linear
programming problem. The weight of the edgyés defined to be

W(é) = Wmax _W(Q )’ Where Wmax = maxlsisk W(Q )

In addition to its weight, each edge in this model also has a br@adgsociated

with it. This comes from the fact that the cost of adding a register is not the same
on all edges. For example, it may be cheaper to add a register along a one-bit wide
control path than along a 32-bit wide data path; thus we model this phenomenon
by assigning to each edgea breadth3 . The breadth of an edge is a number

used so that the gadget in Fig. 4-5(b) properly models the memory required by the
edgese ,1<i <k, in the retimed DFG. The breadth of each edgesttend €

for 1<i<k is B =1/k, as shown in Fig. 4-5(b).

W 1/k v«a)@w(elemaXW(el) 1/k
1
[ we) 1k W(e) (e

¢ ¢
¢ ¢
[ [
w(e) 1k w(e) v W(e)=Wma(e) 1/
k
(a) (b)
Figure 4-5 (a) A nodeu with k output edges. (b) A gadget used to model the

nodeu .

Using the fanout model in Fig. 4.12, the retiming formulation is: Minimize

Equation 21
COST= Zeﬁ(e)wr (e

subject to:-
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1. (fanout constrainty (u) —r(v) < w(e) for every edgesi [ITF - v.

2. (clock period constraint)(u) —r(v) <W(u,v) —1for all verticesu,vsuch that
D(u,v) >c.

The expression foCOST can be rewritten as

Equation 22
COST= z Bew. (e)

=% BEW(E)+r(v)-r(u)
=S BEWE)+Y BErV)-r(W)
=K+ BE(r(v)-r(u)

=K + Zr(v)( ; B(e) - ;g(e))

since K is aconstant, the formulation can be written as Minimize

Equation 23
COST=S 1Y, . BO-F s ,BE)

subject to the constraints immediately above.

5. CONCLUSIONS

Systems can be retimed to reduce critical path or clock period, number of storage or
delay elements. Shortest path algorithm can be used to obtain a retiming solution if
one exists. General framework for the understanding of circuit timing has been
presented through the use of graphical model with which we have been able to deal
with an otherwise complex problem of circuit retiming.
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