
1

S-38.220
Postgraduate Course on Signal Processing in

Communications,
FALL - 99

Gibson Mwakipesile

JMT 1B 306
ESPOO 02150

gibson@cc.hut.fi

Date: 13.10.1999

2

ABSTRACT

This paper presents formulations of the retiming problem, and, based on these
formulations, some techniques are introduced to determine the solutions to these
problems. We also show that the problem of determining an equivalent circuit with
minimum state (total number of registers) is the linear-programming dual of a
minimum-cost flow problem, and hence can also be solved efficiently. The techniques
are general in that many other constraints can be handled within the graph-theoretic
framework

3

ABSTRACT...2

1. INTRODUCTION...4

2. PRELIMINARIES..4

2.1 ALGORITHM CP (COMPUTE THE CLOCK PERIOD OF ACIRCUIT) ..7

3. RETIMING ...8

3.1 BASICS..8
3.1.1 Properties ...9

4. DETERMINING AN OPTIMAL RETIMING ..10

4.1 RETIMING TECHNIQUES..13
4.1.1 Cutset Retiming and Pipelining..13
4.1.2 Retiming for Clock Period Minimization...15
4.1.3 Retiming Register Minimization ...17

5. CONCLUSIONS ...19

REFERENCES..19

4

1. INTRODUCTION

Retiming is a technique used to move delay elements around in a circuit without
changing its functionality i.e. the input/output characteristics of the circuit. One effect
of changing the location of the delays is that combinatorial rippling can be reduced,
allowing the circuit to be clocked at higher rate. Reducing combinatorial rippling also
decreases the dynamic power dissipation in the circuit and allows the circuit to be
operated at with the lower supply voltage, both of which lead to low-power
implementations. Another effect of changing the locations of delays is that the
number of number of delay elements required can be reduced, resulting in the area-
efficient implementation. Retiming and scheduling are important tools used to map
behavioral descriptions of algorithms to physical realizations. These tools are used
during the design of software for programmable digital signal processors (DSP's).
Retiming and time scheduling operate directly on a behavioral description of the
algorithm, such as a data-flow graph (DFG). Scheduling consists of assigning
execution times to the operations in a DFG such that the precedence constraints of the
DFG are not violated. Unlike pipelining, retiming does not increase circuit latency.
Due to the recent demand for low-power digital circuits in portable devices, some
recent work has focused on retiming for power minimization. An approach based on
circuit theory can be used to generate all retiming solutions for a DFG.

2. PRELIMINARIES

Here we introduce the notations and terminology needed in the paper.
Critical path is defined as to be the path with the longest computational time among
all paths that contain zero delays. Folding: Is the process of executing several
algorithm operations on a single hardware module. Scheduling: Is the process of
determining at which time units a given algorithm operation is to be executed in
hardware. The computation time of the critical path, is the path with the longest
computation time among all paths with no delays.

We can view circuit abstractly as a network of functional elements and globally
clocked registers. Functional elements provide the computational power of the circuit.
Our model is not concerned with the level of complexity of the functional elements.
Each element has associated propagation delay.
We model a circuit as a finite, rooted, vertex-weighted, edge-weighted, directed
multigraph wdvEVG h ,,,,= (thus, we shall simply say "graph" or, morefrequently,

"circuit"). The vertices V of the graph model the functional elements of the circuit.
Each vertex Vv∈ is weighted with numerical its numerical propagation delay)(vd .

A root vertex hv , called the host, is included to represent the interface with the

external world, and it is given zero propagation delay. The directed edge E of the
graph model interconnection between functional element and is weighted with a
register count)(ew . The register count is the number of registers along the
connection. Between two vertices, there may be multiple edges with different register
counts.

5

To avoid confusion between vertex-weight functions i.e. d and edge-weight functions
i.e. w , we shall use the term weight for edge-weight functions only. We shall refer to
the particular edge-weights)(ew of a circuit as register counts. If e is an edge in a

graph that goes from vertex u to vertex v , we shall denote as vu e→ . In the event
that the identity of either the head or the tail of an edge is unimportant, we shall use
the symbol ?, as in ?→eu .
For a graph G , we shall view a path p in G as a sequence of vertices and edges. A
simple path contains no vertex twice, and therefore the number of vertices exceeds the
number of edges by exactly one. We extend the register count function w in a natural
way from single edges to arbitrary paths. For any path

k
eee vvvp k→→→= −110 ...10 , we define the path weight as the sum of the

weights of the edges of the path:

Equation 1

∑
−

=

=
1

0

)()(
k

i
iewpw

Similarly, we extend the propagation delay d function to simple paths. For any
simple path k

eee vvvp k→→→= −110 ...10 , we define the path delay as the sum

of the delays of the vertices of the path:

Equation 2

∑
=

=
k

i
ivdpd

0

)()(

 In order that a graph wdEVG ,,,= have well-defined physical meaning as a circuit,

we place nonnegativity restrictions on the propagation delays)(vd and the register
counts)(ew :

D1. The propagation delay)(vd is nonnegative for each vertex Vv∈ .
W1. The register count)(ew is a nonnegative integer for each edge Ee∈ .

We also impose the restriction that there be no directed cycles of zero weight:

W2. In any directed cycle of G , there is some edge with (strictly) positive
 register count

We define synchronous circuit as a circuit that satisfies Conditions D1, W1, and W2.
The reason for including Condition W2 is that whenever an edge e between two
vertices u and vhas zero weight, a signal entering vertex u can ripple unhindered
through vertex u and subsequently through vertex v . If the rippling can feedback
upon itself, problems of asynchronous latching, oscillation, and race condition can
arise. By prohibiting zero-weight cycles, Condition W2 prevents these problems from
occurring, provided that system clock runs slowly enough to allow the outputs of all
the functional elements to settle between each two consecutive ticks.

6

For any synchronous circuit G , we define the (minimum feasible) clock period)(GΦ
as the maximum amount of propagation delay through which any signal must ripple
between clock ticks. Condition W2 guarantees that the clock period is well defined by
the equation

Equation 3
{ }0)()(max)(==Φ pwpdG

 V7 V6 V5
 0 0
 0
 Vh

 0 0 0 0
 1

 1 1 1
 V1 V2 V3 V4

Figure1-1

for the circuit graph in Fig. 1 the clock period is 24, which corresponds to the sum of
the propagation delays along the path 7654 vvvv →→→ .

The computation time of the path is:

Equation 4

∑
−

=

=
1

0

)()(
k

i
ivtpt

A cycle is a closed path 01210
12210 ... vvvvv kk e

k

eeee  → →→→→ −−
− .

The weight of the cycle c is:

Equation 5

∑
−

=

=
1

0

)()(
k

i
iewcw

and the delay of the cycle is:

Equation 6

∑
−

=

=
1

0

)()(
k

i
ivtct

O

3

7 7 7

3 3 3

7

2.1 Algorithm CP (Compute the clock period of a circuit)

This algorithm computes the clock period)(GΦ for asynchronous circuit
wdvEVG h ,,,,=

.

1. Let 0G be the subgraph of G that contains precisely those edges ewith

register count 0)(=ew .

2. by Condition W2, 0G is acyclic. Perform a topological sort on 0G , totally

ordering its vertices so that if there is an edge from vertex v in 0G , then
u precedes v in the total order.

3. Go through the vertices in the order defined by the topological sort. On

visiting each vertex v , compute the quantity)(v∆ as follows:

a. If there is no incoming edge to v , set)()(vdv ←∆ .

b. Otherwise, set
{ }0)()(max)()(=→∆+←∆ ewandvuuvdx e

 4. The clock period)(GΦ is
)(max vVv ∆∈ .

The algorithm works because for each vertex v , the quantity)(v∆ equals the

maximum sum)(pd of vertex delays along any zero-weight directed path p in

G such that vp→? . The running time is
()EΟ

.

3. RETIMING
3.1 Basics

The basic retiming equation for the edge
 (1) (1)

x(n) y(n) x(n) y(n)

 2D
D D a 2D D a
 w(n)

 (1) (2) (1) D (2)

 b
 b D

 w2 (n)
 (2) (2)

Figure3-1:Two versions of an IIR filter. The computation times are shown in
parentheses.

+

+ X

X

+

+ X

X

8

Consider the IIR filter in Fig. 3-1(a). This filter is described by

Equation 7

)()3()2()(

)()1()(

)2()1()(

nxnbynayny

nxnwny

nbynaynw

+−+−=
+−=

−+−=

The filter in Fig. 3-1(b) is described by

Equation 8

)()3()2()(

)()1()1()(

)2()(

)1()(

21

2

1

nxnbynayny

nxnwnwny

nbynw

naynw

+−+−=
+−+−=

−=
−=

Although the filters in Fig. 3-1(a) and Fig. 3-1(b) have delays at different locations,
these filters have the same input/output characteristics. These filters can be derived
from one another using retiming.

Retiming has many applications in synchronous circuit design. These applications
include reducing the clock period of the circuit, reducing the number of registers in
the circuit, reducing the power consumption of the circuit, increasing the clock rate of
a circuit by reducing the computation time of the critical path, and logical synthesis.

Retiming can be used to increase the clock rate of a circuit by reducing the
computation time of the critical path. The computation time of the critical path is the
lower bound on the clock period of the circuit. The critical path of the filter in Fig. 3-
1(a) passes through I multiplier and 1 adder and has a computational time of 3 u.t., so
this filter cannot be clocked with a clock period less than 3 u.t. The retimed filter in
Fig. 3-1(b) has a critical path that passes through 2 adders and has a computation time
of 2 u.t. By retiming the filter in Fig. 3-1(a) to obtain the filter in Fig. 3-1(b), the clock
period has been reduced from 3 u.t. to 2 u.t., or by 33%.

Retiming can be used to reduce the number of registers in a circuit. the filter in Fig. 3-
1(a) uses 4 registers while the filter in Fig. 3-1(b) uses 5 registers. Since retiming can
affect the clock period and the number of registers, it is sometimes desirable to take
both of these parameters into account.

Retiming can be used to reduce the power consumption of a circuit by reducing
switching, which can lead to dynamic power dissipation in static CMOS circuit.
Placing registers at the inputs of nodes with large capacitances can reduce the
switching activities at these nodes, which can lead to low-power solutions .

3.1.1 Properties

9

A retimed solution is characterized by a value)(vr (this values are obtained by
solving the linear programming equation which is formed by linear inequalities in

eqn. 15) for each node v in the graph. Let)(ew denote the weight if the edge ein the

original graph G , and let)(ewr denote the weight of the edge e in the retimed graph

rG . The weight of the edges vu e→ in the retimed graph is computed from the
weight of the edge in the original graph using

Equation 9
)()()()(urvrewewr −+=

For example, the edge 23 →e
 in the retimed DFG contains

Equation 10

1010)23(

)3()2()23()23(

=−+=→

−+→=→
e

r

ee
r

w

rrww

delay, and the edge 12 →e
contains

Equation 11

0101)12(

)2()1()12()12(

=−+=→

−+→=→
e

r

ee
r

w

rrww

delays.

The solution 0)4(,0)3(,1)2(,0)1(==−== randrrr is infeasible because, for

example, the edge 23 →e
in the retimed system contains

Equation 12

10)1(0)23(

)3()2()23()23(

−=−−+=→

−+→=→
e

r

ee
r

w

rrww

delays.

 Several properties of retiming can be derived from the retiming equation (6).

Property 3.1.1 The weight of the retimed path k

eee vvvp k →→→= −110 ...10 is

 given by)()()()(0vrvrpwpw rr −+= .

The retimed path weight is:

10

Equation 13

).()()(

))()(()(

))()()((

)()(

0

1

0

1

0

1

0
1

1

0
1

1

0

vrvrpw

vrvrew

vrvrew

ewpw

k

k

i

k

i

k

i
iii

k

i
iii

k

i
irr

−+=

−+=

−+=

=

∑ ∑ ∑

∑

∑

−

=

−

=

−

=
+

−

=
+

−

=

for example, the path 312 →→ in Fig. 4.2(a) has 2 delays, and this path in the

retimed DFG in Fig. 4.2(b) has 1102)2()3(2 =−+=−+ rr delay.

Property 3.1.2 Retiming does not change the number of delays in a cycle.

 This is a special case of property 3.1.1 where .0vvk = The weight of

 the retimed cycle c is).()()()()(00 cwvrvrcwcwr =−+= In Fig. 4.2,
 the cycle 1231 →→→ contains 2 delays in the unretimed and
 retimed DFGs, and the cycle 1241 →→→ contains 3 delays in the
 unretimed and retimed DFGs.

Property 3.1.3 Retiming does not alter the iteration bound in a DFG.

Property 3.1.4 Adding the constant value j to the retiming value of each node does

 not change the mapping the mapping from G to .rG

After replacing)(vr with jvr +)(for each node, the weight of the

retimed edges vu e→ in rG is:

Equation 14
)()()())(())(()()(urvrewjurjvrewewr −+=+−++=

which is the same for any value j (including j = 0). By adding, for example, the

constant -10 to the retiming values 0)4(,0)3(,1)2(,0)1(==== randrrr , the

retiming values 10)4(,10)3(,9)2(,10)1(−=−=−=−= randrrr can be used to obtain
the retimed DFG in Fig. 4.2(b) from the DFG in Fig. 4.2(a).

11

4. DETERMINING AN OPTIONAL RETIMING

Here we presents a polynomial-time algorithm for relocating registers within a circuit
so as to maximize the performance of the circuit. Specifically we'll solve the

following problem: Given a circuit graph
wdvEvG h ,,,,=

, find a legal retiming r of

G such that the clock period)(rGΦ of the retimed circuit rG is as small as possible.
The solution of this problem depends on some basic results from combinatorial
optimization and graph theory. In particular, we rely on the fact that the following
linear programming problem can be solved efficiently.

Problem LP. Let Sbe a set of mlinear inequalities of the form

Equation 15

ijji krr ≤−

on the unknowns nrrr ,...,, 21 , where the ijk
are given real constants. Determine

feasible values for the unknowns ir , or determine that no such values exist.

This is done using the following procedure:

1. Draw a constraint graph.

a. Draw the node i for each of the N variables .,...,2,1, Niri =

b. Draw the node .1+N

c. For each inequality
krr ji ≤−

, draw the edge ij → from node j to node
i with length k .

d. For each node i , ,,...,2,1 ni = draw the edge iN →+1 from the node
1+N to the node i with length 0.

2. Solve using a shortest path algorithm.
a. The system of inequality has a solution iff the constraint graph contains

no negative cycles.

b. If a solution exists, one solution is where ir is the minimum-length path
from the node 1+N to the node i .

When solving systems of inequalities, there may be multiple inequalities with
identical left-hand sides, which can lead to parallel edges in the Step 1(c). For

example the two inequalities 7)2()1(9)2()1(≤−≤− rrandrr would lead to two
edges from node 2 to node 1 with weights 9 and 7. When this happens, the most
restrictive of these inequalities should be selected to avoid drawing parallel edges in
Step1(c).

12

To demonstrate the just described algorithm, the values of),(vuW and),(vuD are

computed for the DFG in Fig. 4-1(a). In the first step, 2max =t and ,4=n so

.8=M The new graph G′ (found in the second step) is shown in Fig 4-1(c). The
solution to the all-pairs shortest path problem for G′can be found using the Floyd-
Warshall algorithm. The solution found in the third step , and the values of

),(vuW and),(vuD (found in the final step), are given in the Table 1-1.

 (1) (1) (1)

 D D 2D D 2D 7 7 15
 -2
 (1) (2) (1) D (2) (1) (2)

 -2
 (2) D (2) (2)

Figure 4-1: (a) A DFG. (b) The retimed DFG obtained using
.0)4(,0)3(,1)2(,0)1(==== randrrr (c)The graph G′used to

compute),(vuW and),(vuD for the DFG in (a).

Table 1-1:

The tables above shows the values of the functions),(vuW and),(vuD for

the GDF in Fig. 4-The quantity),(vuW is the number of registers on a

minimum-weight path from u to v , and),(vuD is the maximum
propagation delay along any such critical path. The distinct entries in the

table for D include all possible clock period less than c iff
0),(>vuWr wherever cvuD >),(.

Any such system of linear inequalities can be satisfied or determined to be

inconsistent in)(mnO time by the Bellman-Ford algorithm.

1

2 3

4

1

2 3

4

1

2 3

4

Suv 1 2 3 4
1 12 5 7 15
2 7 12 14 22
3 5 -2 12 20
4 5 -2 12 20

W(U,V) 1 2 3 4

1 0 1 1 3
2 1 0 2 3
3 1 0 0 3
4 1 0 2 0

D(U,V) 1 2 3 4

1 1 4 3 3
2 2 1 4 4
3 4 3 2 6
4 4 3 6 2

13

4.1 Retiming Techniques

4.1.1 Cutset Retiming and Pipelining

A cutset is a set of edges that can be removed from the graph to creat two
disconnected subgraphs. Cutset retiming only affects the weights of the edges in

the cutset. If the two disconnected subgraphs are labeled 21 GandG , then cutset

retiming consists of adding k delays to each edge from 21 GtoG and removing

k delays from each edge from 12 GtoG . For example, a cutset is shown with a

dashed line in Fig. 4-1(a). The 3 edges in the cutset are .41,23,12 →→→ and

The two subgraphs 21 GandG found by removing the 3 edges in the cutset are

shown in Fig. 4-1(b). For ,1=k the result of cutset retiming is shown in Fig.

 G1

 D 3D
 D D 2D
 D

 G2

 (a) (b) (c)

Figure 4-1: (a) unretimed DFG with a cutset shown as a dashed line. (b) The 2
graphs 21andGG formed by removing the edges in the cutset. (c) The retimed

graph found using cutset retiming with .1=k

4.4(c). The edges from ,41232321 →→→ andandareGtoG and one delay is
added to each of these edges. The edge from ,1212 →isGtoG and one delay is
subtracted from this edge.

Cutset retiming is a special case of retiming where each node in the subgraph

1G has the retiming value j and each node in the subgraph 2G has the retiming
value .kj + The value of j is unimportant due to Property 4.2.4. For example, in
Fig. 4.4, using the values 10 == kandj results in

,1)4(,0)3(,2)2(,0)1(==== randrrr and this maps the DFG in Fig. 4-1(a) to
the DFG in Fig. 4-1(c). Any value of j results in the retimed graph. For

feasibility of the retimed graph, 0)(≥ewr must hold for all edges ein .rG Let

2,1e represent an edge from ,21 GtoG and let 1,2e represent an edge from .12toGG

1

2 3

4

1

2 3

4

1

2 3

4

14

D D

D

IN IN

IN D D

a b c

2D 2D2D

OUT

OUT OUT

Since cutset retiming adds k delays to each edge from 0)(, 2,121 ≥ewGtoG r must

hold. similarly, since k delays are subtracted from each edge 1,2e from

0)(0)(, 1,21,212 ≥−⇒≥ kewewGtoG r must hold. Combining these two

inequalities and considering all of the edges in the cutset result in

Equation 16

{ } { })(min)(min
1221

ewkew
GGGG e →→

≤≤−

as the condition on k for cutset retiming to give a feasible solution. In Fig. 4.4,
{ } { } { } 10,1)(min02,0min)(min

1221
≤≤===

→→
ksoewandew

GGGG ee must

hold. Since 0=k does nothing, 1=k is the only value of k that results in a feasible
graph, and this graph is shown in Fig. 4-1(c).

 a b c a b c

 (a) (b)

Figure4-2: (a) The unretimed DFG with a cutset shown as a dashed line. (b) The 2
graphs 21 GandG formed by removing the edges in the cutset. (c) The graph

obtained by cutset retiming with .2=k

X X X

+ +

X X X

+ +

X X X

X X

15

Stage 2 Stage 100Stage 1

IN

OUT

IN

OUT

Stage 1 Stage 2 Stage 100

Stage 1 Stage 2 Stage 100

Pipelining is a special case of cutset retiming where there are no edges in thw
cutset from the subgraph 2G to the subgraph 1G , i.e. pipelining applies to graphs
without loops. these cutsets are referred to as feed-forward cutsets. The feed-
forward cutset shown in Fig. 4-2(a) divides the graph into the two subgraphs
shown in Fig. 4-2(b). All three of the edges in the cutset go from ,21 GtoG and
performing cutset retiming with 2=k results in 2 additional delays on each edge
in the cutset, resulting in the retimed (or pipelined, in this case) graph in Fig. 4-
2(c). Tis demonstrates that the pipelining can be viewed as a special case of
retiming.

Cutset retiming is often used in combination with Slow-down. The procedure is to
first replace each delay in the DFG with N delays to create an SlowN − version
of the DFG and the to perform cutset retiming on the SlowN − DFG. Note that in
an SlowN − system, 1−N null operations (or 0 samples) must be interleaved after
each useful signal sample to preserve the functionality of the algorithm.

For example, consider the 100-stage lattice filter in Fig. 4-3(a), which has a
critical path of 101 adders and 2 multipliers. Assuming that addition and
multiplication takes 1 and 2 u.t., respectively, the minimum sample period is
(101)(1)+(2)(2)=105 u.t. The Slow−2 version of this circuit is shown in Fig. 4-
3(b), and cutset retiming can be used to obtain the circuit in Fig. 4-3(c).

The critical path of the retimed circuit has 2 adders and 2 multipliers and has
computation timw (2)(1)+(2)(2)=6 u.t. Since this circuit is Slow−2 , the minimum
sample period is (2)(6)=12 u.t. In this example, downSlow− and cutset retiming
reduce the sample period from 102 u.t. to 12 u.t.

 (a)

 (b)

x

x

x
x

D

x

x

x
x

D

x

x

x
x

D

D

x

x

x
x

x

x

x
x

2D

x

x

x
x

D

2D2D

16

IN

OUT

 (c)

Figure 4-3: In each of the 3 filters, the critical path is shown woth the dotted lines.
(a) A 100-Stage lattice filter with minimum sample period of 105 u.t. (b) The

2-slow version of the circuit. (c) A retimed vertion of the 2-slow circuit.

To summaries, cutset retiming is a special case of retiming, and pipelining is a
special case of cutset retiming. cutset and pipelining are graphical techniques that
can be used to perform complex retiming operations in a simple manner.

4.1.2 Retiming for Clock Period Minimization

Here we present a retiming algorithm for minimizing the clock period of a
synchronous circuit. For a circuit ,G the minimum feasible clock period is the
computation time of the critical path, which is the path with the longest
computation time among all paths with no delays. Mathematically, the minimum
feasible clock period,),(GΦ is defined as:

Equation 17
{ }0)(:)(max)(==Φ pwptG

The algorithm is concerned with finding a retiming solution 0r such that

)()(
0 rr GG Φ≤Φ for any other retiming solution .r

The two quantities),(),(vuDandvuW are use in this algorithm. The quantity
),(vuW is the minimum number of registers on any path from node u to node v

and),(vuD is the maximum computation time among all paths from u to v with
weight),(vuW Formally:

Equation 18
{ }
{ }),()(:)(max),(

:)(min),(

vuWpwandvuptvuD

vupwvuW
p

p

=→=

→=

The algorithm for optimizing the clock period of a circuit is based on an alternate
characterization of clock period in terms of the two quantities above.

The following algorithm can be used to compute).,(),(vuDandvuW

x

x

x
x

D

x

x

x
x

D

x

x

x
x

D

D

D DD

17

1. Let ,maxntM = where maxt is the maximum computation time of the node in

G and n is the number of node in .G

2. From a new graph G′ which is the same as G except the edge weights are
replaced by)()()(uteMwew −=′ for all edges .vu e→

3. Solve the all-pairs shortest path problem on .G′ Let uvS′ be the shortest path

from .vtou

4. If ,vu ≠ then 



 ′

=
M

S
vuW uv),(and).(),(),(vtSvuMvuD uv +′−= If ,vu = then

).(),(0),(utvuWandvuW ==

The value of []x is the ceiling of x , which is the smallest integer greater than or
equal to .x

The values of),(),(vuDandvuW are used to determine if there is a retiming
solution that can achieve a desired clock period. Given a desired clock period c ,
there is a feasible retiming solution r such that cGr ≤Φ)(if the following
constraints hold:

1. (fanout constraint))()()(ewvrur ≤− for every edges vu e→ of ,G and

2. (critical path constraint) 1),()()(−≤− vuWvrur for all vertices vu, such that
.),(cvuD >

The feasibility constraint forces the number of delays on each edge in the retimed
graph to be nonnegative, and the critical path constraint enforces .)(cG ≤Φ If

1)()(),(≥−+ urvrvuW must hold for the critical path to have computation time
less than o equal to .c This leads to the critical path constraint.

4.1.3 Retiming Register Minimization

Here we present the algorithm for finding a retiming solution that uses the
minimum number of registers while satisfying the clock period constraint. If a
node has several output edges carrying the same signal, the number of registers
required to implement these edges is the maximum number of registers on any one
of the edges. This is demonstrated in Fig. 4-4(a) uses 1+3+7=11 registers with the
clever implementation in Fig. 4-4(b) uses max(1,3,7)=7 registers. Using this
concept, the number of registers required to implement the output edges of the
node v in the retimed graph is:

Equation 19
{ })(max

?
ewR r

v
v e→

=

18

and the total register cost in the retimed circuit is .∑= vRCOST

 (a) (b)

Figure 4-4: (a) Fanout implementation using 1+3+7=11 registers. (b) Fanout
implementation using max(1,3,7)=7 registers.

The formulation of the retiming to minimize the number of registers under the
constraint that the clock period is not greater than c is:

Equation 20

∑= vRCOST

subject to:-

1. (fanout constraint))(ewR rv ≥ for all vand all edges .?→ev

2. (feasibility constraint))()()(ewvrur ≤− for every edge .vu e→

3. (clock period constraint) 1),()()(−≤− vuWvrur for all vertices vu, such that
.),(cvuD >

The fanout constraint makes sure that { }.)(max
?

ewR rvv e→
=

U

V3

V2

V1

3D

7D

D

U

V3

V2

V1

3D

7D

D

D 2D 4DU

V3

V2

V1

19

w(e1)

w(e2)

w(ek)

1/k w(e2)

w(ek)=wmaxw(ek) 1/k1/k w(ek)

w(e1)=wmaxw(e1) 1/k

w(e2)=wmaxw(e2) 1/k

1/k w(e1)

While this formulation of retiming indeed minimizes the number of registers
under a clock period constraint, it is not in a form that can be solved using linear
programming techniques because some solutions may not be integers. To get the
formulation in such a form, a "gadget" is used to represent nodes with multiple
output edges. This gadget is shown in Fig. 4.12. Fig. 4-5(a) shows a fanout node
with k output edges. The gadget in fig 4.12(b) is used to model the fanout node.
Each of the k edges ,ie ,1 ki ≤≤ has an associated weight)(iew which is known

from the DFG. The node û is a dummy node with zero computation time
),0)ˆ((=ut and the edges ,ˆie ,1 ki ≤≤ are dummy edges introduced so the

retiming for register minimization problem can be modeled as a linear
programming problem. The weight of the edge iê is defined to be

),()ˆ(max ii ewwew −= where).(max1max iki eww ≤≤=

In addition to its weight, each edge in this model also has a breadth β associated
with it. This comes from the fact that the cost of adding a register is not the same
on all edges. For example, it may be cheaper to add a register along a one-bit wide
control path than along a 32-bit wide data path; thus we model this phenomenon
by assigning to each edge e a breadth β . The breadth of an edge is a number
used so that the gadget in Fig. 4-5(b) properly models the memory required by the
edges ,ie ,1 ki ≤≤ in the retimed DFG. The breadth of each edge the ie and iê

for ki ≤≤1 is ,/1 k=β as shown in Fig. 4-5(b).

 (a) (b)

Figure 4-5: (a) A node u with k output edges. (b) A gadget used to model the
node .u

Using the fanout model in Fig. 4.12, the retiming formulation is: Minimize

Equation 21

∑=
e r eweCOST)()(β

subject to:-

Vk

V2

V1

U

Vk

V2

V1

U

20

1. (fanout constraint))()()(ewvrur ≤− for every edges vu e→ .

2. (clock period constraint) 1),()()(−≤− vuWvrur for all vertices vu, such that
.),(cvuD >

The expression for COST can be rewritten as

Equation 22

))()(()(

))()()((

))()()(()()(

))()()()((

)()(

?

∑ ∑∑
∑

∑∑
∑
∑

→ →

−+=

−+=

−+=

−+=

=

vv vv

e

ee

e

r
r

e e

eevrK

urvreK

urvreewe

urvrewe

eweCOST

ββ

β

ββ

β

β

since K is aconstant, the formulation can be written as Minimize

Equation 23

∑ ∑∑ →→
−=

v vv ee eevrCOST))()()((
??
ββ

subject to the constraints immediately above.

5. CONCLUSIONS

Systems can be retimed to reduce critical path or clock period, number of storage or
delay elements. Shortest path algorithm can be used to obtain a retiming solution if
one exists. General framework for the understanding of circuit timing has been
presented through the use of graphical model with which we have been able to deal
with an otherwise complex problem of circuit retiming.

REFERENCES

[1] K.K. Parhi. VLSI Digital Signal Processing Systems Design and Implementation.
chapter 4. J. Wiley & Sons, 1999.

[2] R. Bryant. Third Caltech Conference on VLSI. Optimizing Synchronous Circutry
by Retiming. C.E. Leiserson, F.M. Rose, J.B. Saxe. Computer Science Press,1988.

21

[3] T.C. Denk and K.K. Parhi, “Two-dimentional retiming”, IEEE Trans. On VLSI
Systems, vol. 7, 1999.

[4] T.C. Denk and K.K. Parhi, “Exhaustive scheduling and retiming of digital signal
processing systems”, IEEE Trans. On Circuits and Systems-II:Analog and Digital
Signal Processing, vol. 45, no.7, pp. 821-838, July 1998.

