
S-38.220
Postgraduate Course on Signal Processing in

Communications,
FALL - 99

Algorithmic strength reduction
in filters and Transforms

Yaohui Liu

Laboartory of telecommunications Technology
Helsinki University of Technology

P.O.Box 3000 02150 Espoo

Email: yaohui.liu@hut.fi

Date: 08.11.1999

2

1. INTRODUCTION ...4

2. PARALLEL FIR FILTER..4

2.1 FORMULATING PARALLEL FIR FILTERING USING POLYPHASE DECOMPOSITION..........................4
2.2 FAST FIR ALGORITHM ...6

2.2.1 Two parallel low complexity FIR filters..6
2.2.2 Parallel filters by transposition...7
2.2.3 Parallel filters from linear convolution...8
2.2.4 Fast Parallel filters for large block sizes ..9

3. DISCRETE COSINE TRANSFORM AND INVERSE DCT ..10

3.1 ALGORITHM-ARCHITECTURE TRANSFORMATION...10
3.2 DECIMATION-IN-FREQUENCY..12

4. PARALLEL ARCHITECTURES FOR RANK-ORDER FILTERS......................................14

4.1 BATCHER’S ODD-EVEN MERGE-SORT ALGORITHM...14
4.2 RANK-ORDER FILTER(ROF) & PARALLEL ROF..15
4.3 RUNNING ORDER MERGE SORTER (TIME MAPPING) ...16
4.4 LOW POWER RANK-ORDER FILTER...17

5. CONCLUSIONS..17

6. REFERENCE ..18

7. PROBLEMS...19

3

ABSTRACT

This paper exploits the interplay between the design of DSP algorithm and integrated

circuit implementations. The design of algorithm structures for various DSP

algorithms are discussed based on the algorithmic strength reduction

transformations. Particularly, strength reduction techniques are applied to parallel

fast filter, discrete cosine transforms (DCTs) and parallel rank-order filters.

4

1. INTRODUCTION

Digital signal processing (DSP) is widely used in applications such as video coding,
noise cancellation and so on. The field of DSP has always been driven by the
advances in DSP applications and in scaled very-large-scale-integrated (VLSI)
technologies. Therefore, at any given time, DSP applications impose several
challenges on the implementations of the DSP systems. These implementations must
satisfy the enforced sampling rate constraints of the real-time DSP applications and
must require less space and power consumption.
The report surveys the ideas of strength reduction in high-level algorithm
transformations, which can be applied to reduce the number of multiplication in
parallel FIR filter architecture, discrete cosine transforms (DCTs) and parallel rank-
order filters.
This report is based on the book Chapter 9 of the book [1]. The multirate signal
processing concepts and notations appeared in this report can refer to the chapter 8 of
book [2]. The algorithms used in strength reduction include Polyphase decomposition,
and a couple of Fast FIR algorithms for parallel FIR filtering; Algorithm Architecture
Transformation and Decimation-in-frequency for DCT transform; Odd-Even Merge-
Sort algorithm and Running order merge sorter for rank order filters. The design of
fast Fourier transform (FFT) structures is also based on strength reduction
transformations but is not covered in this report since it is covered in many
introductory DSP textbooks, e.g. [2].

2. PARALLEL FIR FILTER

FIR filter is one of the most popular elements in DSP systems. In some application,
FIR filters need to work at high frequencies, while in other applications, FIR filter
circuit has to be low-power consuming, and operate at moderate frequencies. Parallel
processing can be applied to achieve the above goal. However, the direct
implementation of FIR filter will cause the area of the circuit increases linearly with
the block size of the original circuit. Therefore, it is advantageous to realize parallel
FIR filtering structure that consumes less area than the traditional parallel filters while
having the same performance.

2.1 Formulating Parallel FIR filtering using Polyphase decomposition

In this section, we first review a method to realize the parallel structure of the FIR
filters. In fact, it is a technique used in multirate signal processing.
The main idea of polyphase decomposition is that using the property of the
transformation between the signal in time domain and in z-domain. A input sequence
can be decomposed into even numbered part and odd-number part. The z-domain
expression of the convolution of the signal and the FIR filter can be expressed as

() () ()2
1

12
0 zXzzXzX −+= (1)

5

where X0(z
2) and X1(z

2) are the z-transform of x(2k) and x(2k+1), respectively.
Similarly, the N tap FIR filter coefficients H(Z) can be decomposed as

() () ()2
1

12
0 zHzzHzH −+= (2)

The filter can process two inputs and generate two outputs per iteration. So that we
have 2-parallel FIR filter, which can be written as

















=







 −

1

0

01

1
2

0

1

0

X

X

HH

HzH

Y

Y (3)

This polyphase decomposing process is shown in the following figure.

H(z)x(1), x(2), x(3),…

















=







 −

1

0

01

1
2

0

1

0

X

X

HH

HzH

Y

Y

() () () () () ()zXzHzYnxnhny =⇔∗=

h(n) and x(n) can be decomposed into even
numbered part and odd-numbered part

() () ()2
1

12
0 zHzzHZH −+=

Figure 2-1: polyphase decomposition.

The implementation of the 2-parallel FIR filter is shown below,

Figure 2-2: Traditional 2-parallel FIR filter implementation

H0

H1

x(2k+1)

H0

H1

x(2k)
+

+

 D
z−2

y(2k)

y(2k+1)

6

Generally, the polyphase decomposition can be used to derive L-parallel FIR filters by
decomposing X(z), H(z) and Y(z) into L subsequences. As we see, such L-parallel
filter doesn’t save operations. It requires N/L multiply-add operations, which is linear
in the block size L. We need to derive fast FIR algorithms to reduce the complexity
for parallel FIR filters.

2.2 Fast FIR algorithm

According to Winograd [3], L-parallel FIR filters can be realized using approximately
(2L-1) FIR filters of length-N/L In this section, we address the derivation of hardware
efficient parallel FIR filters using the fast FIR algorithms.

2.2.1 Two parallel low complexity FIR filters

The 2-parallel FIR filter shown in figure 2-2 requires 2N multiplication and addition
operation. If we rewrite equation (3) into

We get the reduced-complexity 2-parallel FIR filter.

Figure 2-3: reduced-complexity 2-parallel FIR filter implementation

The reduction of the operation is summarized in the following table.

Table 2-1 The reduction of the operations

() 1100101

11
2

000

XHXHHHY

XHzXHY

−−+=
+= −

(4)

H1x(2k+1)

H0

H0+H1

x(2k)

+

 D

−

y(2k)

y(2k+1)
++

+

−

Polyphase decomposition Low-complexity 2-parallel filter

H0 + H1 ={h0+h1, h2+h3, h4+h5, h6+h7};
H0={h0, h2, h4, h6}; H1={h1, h3, h5, h7}

H0={h0, h2, h4, h6};
H1={h1, h3, h5, h7}Filter-taps

4N/2 = 2N

4(N/2−1) +2 = 2(N −1)

3N/2 = 1.5N

3(N/2−1) + 4 = 1.5N +1

×

+

7

The reduction of operation for 2-parallel filters is that it requires 12 multiplications
and 13 additions. We note that H0+H1 are precomputated

The 2 parallel filter can be expressed in matrix format. We can summarize that the
reduction of operation is achieved by diagonalize the pseudocirculant matrix. As we
see the H matrix has been diagonized in the following equation, so that the operation
is reduced.

i.e.

22222 XPHQY = (6)

In the equation, Q2 and P2 are the postprocessing and preprocessing matrixs
respectively.

We need to point out that there is not only one implementation of diagonized H
matrix, if we precompute H0−H1, it is also an alternative to reduce the complexity of
the operation. Certainly, we have another advantage of computing H0−H1, which has
better wordlength effects.

2.2.2 Parallel filters by transposition

As point out in the last section, we can transpose the matrix to find another
implementation of the Fast FIR algorithms. Although the transposed version of the
implementation have the same hardware complexity, they have different wordlength
and round off noise performance.
We can write the L-parallel FIR filter in matrix format

HXY = (7)

We can perform the transposition into two steps

Setp 1: Transpose H matrix and flipping X, Y.
Setp 2: Transpose the signal flow graph (SFG)

As an example,

The SFG is shown below,









































+








−−

=






 −

1

0

1

10

02

1

0

1

1

0

0

1

1

11

0

1

1

X

X

H

HH

H

diag
z

Y

Y (5)

22222 XPHQY = () F
TTT

F
T

F 222222 XQHPXPHQY 222== (8)

8

Figure 2-4 parallel filters by transposition

Generally, both matrix transposition and SFG transposition are applicable to any FFA
to generate equivalent parallel filtering structures.

2.2.3 Parallel filters from linear convolution

Any L×L convolution algorithm can also be used to derive an L parallel fast filter
structure. The reason is that the similarity of the transpose form of a linear
convolution to the standard parallel filtering algorithm. The similarity is shown in the
following equations.

























=

















0

1

0

10

1

0

1

2

0

0

x

x

h

hh

h

s

s

s (9)

























=








−

1

0

1
2

01

01

0

1

0

0

X

X

Xz

HH

HH

Y

Y
(10)

The basic idea of using such similarity to generate FFA is to start from an optimal
linear convolution and take its transposition. As an example, the following optimal
2X2 optimal linear convolution:

We can flip the samples in the sequence of {s}, {h} and {x}, preserve the convolution
formulation. Taking the transpose of this algorithm and by proper substitution for the
elements in the sequence, We have

The coresponding SFG has been shown in Figure 2-3.

H1X1

H0

H0+H1

X0

−

Y0

Y1
−

z−2 H1Y0

H0

H0+H1

Y1

−

X1

X0
−

z−2









































+
















−−=

















0

1

1

10

0

0

1

2

1

1

0

0

1

1

100

111

001

x

x

h

hh

h

diag

s

s

s

































−

−
















+








=








−

1

0

1
1

0

10

1

1

0

110

010

011

110

011

X

X

Xz

H

HH

H

diag
Y

Y

(11)

(12)

9

2.2.4 Fast Parallel filters for large block sizes

The basic idea of this chapter is show how to implement an m-parallel FFA by
cascading n-parallel FFA to produce an (m×n)-parallel filtering structure.

When we consider equation (7) again. For example, we design a 4-parallel FIR filter.
We have

()()3
3

2
2

1
1

03
3

2
2

1
1

0

3
3

2
2

1
1

0

HzHzHzHXzXzXzX

YzYzYzYY
−−−−−−

−−−

++++++=

+++= (13)

We can first apply the 2-parallel FFA to Equation (13), and then applying the FFA a
second time to each of the filtering operations that result from the first application of
the FFA. The processe is shown in the following figure

Figure 2-5: cascading structure for large block of FFA

By applying the operation shown above, we could have reduced complexity 4-parallel
FIR filter shown below.

Figure 2-6: reduced complexity 4-parallel FIR filter

()()3
2

2
2

1
1

03
2

2
2

1
1

0

3
2

2
2

1
1

0

HzHzHzHXzXzXzX

YzYzYzYY
−−−−−−

−−−

++++++=

+++=

()()'''' 1
1

01
1

0 HzHXzXY −− ++=

Application 1

'
0X

()()2
2

02
2

000 '' HzHXzXHX −− ++=

Application2
Filtering operation

00 '' HX 11 '' HX ()()1010 '''' HHXX ++

4-parallel filtering structure

H1x(4k+2)

H0

H0+H1

x(4k)

+

 D

−

y(4k)

y(4k+2)
++

+

−

H1x(4k+2)+ x(4k+3)

H0

H0+H1

x(4k)+ x(4k+1)

+

 D

−

y(4k+1)

y(2k+3)
++

+

−

H1x(2k+3)

H0

H0+H1

x(4k+1)

+

 D

−

++

+

−

+

+

 D

+ +

+ +

−

−

−

−

10

3. DISCRETE COSINE TRANSFORM AND INVERSE DCT

DCT is a very useful transformation in Video processing. We discuss how can we
efficiently implement DCT transform. First, we have a look at the property of the
DCT transform. The DCT and IDCT algorithms can be expressed by the following
equations

DCT:

() () () ()
110 ,

2

12
cos

1

0

−=



 += ∑

−

=

,...,N,k
N

kn
nxkekX

N

n

π (14)

And IDCT

() () () ()
110 ,

2

12
cos

2 1

0

−=



 += ∑

−

=

,...,N,n
N

kn
kXke

N
nx

N

k

π (15)

Where

()
otherwise

 0k if

1
2

1 =





=ke
(16)

DCT is an orthogonal transform. Reversing the firection of the arrows in the flow
graph of IDCT, we can get DCT. Direct implementation of the DCT require N(N−1)
multiplication operations, i.e., O(N2).

3.1 Algorithm-architecture transformation

We can use algorithm-architecture transformation to reduce the number of
multiplication, so that we can implement DCT efficiently. The reduandancy of the
operation can be easily seen in the matrix expression of the algorithm. When we take
8 point DCT as an example

()
()
()
()
()
()
()
()

()
()
()
()
()
()
()
()
































































=

































7

6

5

4

3

2

1

0

7

6

5

4

3

2

1

0

9271331173217

26142221030186

1112313325155

28201242820124

137127211593

304418141062

15131197531

44444444

x

x

x

x

x

x

x

x

cccccccc

cccccccc

cccccccc

cccccccc

cccccccc

cccccccc

cccccccc

cccccccc

X

X

X

X

X

X

X

X

where

16
cos

πi
ci =

(18)

(17)

11

We can take 3 steps to perform the algorithm architecture mapping.

Step 1: Using the trigonometric property of the matrix, modify the DCT algorithm
systemically to make it simpler.

Step 2: Group the DCT structure into different functional blocks. See as figure 3-1
shows.

Step 3: Reduce the complexity of each block.

Figure 3-1: First step 8-point DCT structures

After these steps, the number of multiplication operations for 8-point DCT is reduced
from 56 to 13. As shown in Figure 3-2.

Figure 3-2: Final 8-point DCT structures

12

3.2 Decimation-in-frequency

Fast implementation of DCT/IDCT for 2m-point can be derived by the decimation in
frequency approach. In fact, the idea is similar to the Fast algorithm for DFT. FFT has
been widely used in the current DSP implementations. If we consider a simplified
IDCT as an example, we can ignore the scaler 2/N, Let

() () ()kXkekX =ˆ (19)

We can write IDCT as

() () ()
110 ,

2

12
cosˆ

1

0

−=



 += ∑

−

=

,...,N,n
N

kn
kXnx

N

k

π (20)

Define

() ()
() () ()

12,...,1,0

12ˆ12ˆ

ˆ

−=
−+−=

=

Nkfor

kXkXkH

kXkG (21)

We can decompose N-point IDCT into two N/2 point IDCT, continue the process, we
can finally get 2-point IDCT show in the following figure.

C4

−1

X(0)

X(1)

x(0)

x(1)

Figure 3-3: Two point IDCT butterfly architecture

Where C4=cos(π/4).
13 multiplications are needed for fast 8 point IDCT. The flowgraph is shown in the
following figure. The structure can be transposed to fet the fast 8-point DCT
architecture.

13

Figure 3-4: 8 point IDCT butterfly architecture

14

4. PARALLEL ARCHITECTURES FOR RANK-ORDER FILTERS

Rank-order filter (ROF) is a kind of nonlinear filter useful in canceling non-Gaussian
noise. ROF sorts the input sequence and choose an output based on its rank. The
system diagram is shown in Figure 4-1 with window size W=5.

Figure 4-1: a rank-order filter with window size W=5 [1]

We discuss the parallel architecture of ROF design based on the Batcher’s odd-Even
Merge-Sort Algorithm and algorithmic strength reduction. By sharing some of the
merge units in different blocks, the hardware complexity can be reduced.

4.1 Batcher’s odd-Even Merge-Sort Algorithm

The odd-Even Merge-Sort Algorithm processes 2 presorted sequence and merge them
into 1 sorted sequence. Figure 4-1 show a 4×4 merge-sort circuit. All inputs with odd
subscripts are input to the odd merge. All inputs with even subscripts are input to the
even merge. The output of each merge unit are again compared with each other except
the first output of the odd-merge, which is the largest among all the inputs and the last
output of the even merge, which is the smallest. As the figure shows, Large merge
unit can be built using small merge-sort units. The smallest merge-sort unit is a 1×1
merge sort unit, which is usually denoted as C&S.

Figure 4-2: A 4× 4 merge sort circuit

15

Other size of merge units can be derived from the 4×4 merge-sort structure. For
example, A 4×2 merge-sort structure can be designed by simply treating the last 2
data elements of 4×4 merge-sort architecture as dummy and throwing away any C&S
unit that has at least one of those dummy elements as inputs. A 4×2 merge-sort
structure requires 6 C&S units.

4.2 Rank-order Filter(ROF) & Parallel ROF

We can start to design the Parallel programmable ROF based on the Batcher’s odd-
Even Merge-Sort Algorithm. Notice that the inputs to the filters are tapped off a delay
line to form a window for the sorter. Figure 4-3 shows a rank order filter structure
with window size W=5.

Figure 4-4: W=5, rank order filter.

We can try to exploit substructure sharing technique to design fewest number of
compare-swap (C&S) unit ROF, and find pairs of inputs common to multiple outputs
to decrease the hardware complexity. By applying parallel structure, we can share the
comparisons within a block.

Repeating the same hardware twice, and eliminate redundant computations. We can
get an efficient ROF structure. This process is shown in the following two figures.

Figure 4-5: W=5, rank order filter architecture with 2 level of parallel processing

16

Figure 4-6: W=5, L=2 rank order filter architecture with substructure sharing.

4.3 Running order merge sorter (Time Mapping)

We can take advantage of the time relation of the inputs to further reduce the number
of merge unit. We call this technique as running order merge sorter, where those units
whose inputs are separated by the same number of time steps are mapped onto a
single merge unit by using extra memory units for each level of merging. The
merging process is shown in the following two pictures.

Figure 4-7: Block structure for W=8 rank-order filter

Figure 4-8: Block structure for time mapped W=8 rank-order filter

17

4.4 Low power rank-order filter

Power consumption reduction using parallel processing is achieved by reducing the
supply voltage while maintaining the same sample rate as the sequential systems.
However, the reduced the power cannot be lower than the threshold voltage (Vt) of the
CMOS device . The parallel system’s power consumption can be written as

seqpar PP 2β= (22)

where β is the power reduction factor and βV0 has to be greater than 2Vt. Without
strength reduction, the area of the parallel system is increased linearly with respect to
the block size L. With substructure sharing, we can achieve the power consumption as

seqpar PP 2αβ= (23)

where α<1 Hence, it is possible to continue to reduce the power consumption beyond
the supply voltage limit by increasing blocksize L.

5. CONCLUSIONS
This report has reviewed the algorithmic strength reduction transformation
approaches discussed in the Chapter 9 of [1]. These transformations exploit
substructures sharing and reduce the number of stronger operations, possibly at the
cost of increasing the number of weaker operations. The application of algorithmic
strength reduction in discrete cosine transformation and parallel rank order filters are
discussed. These architectures can reduce the area and power consumption in a VLSI
implementation or reduce the iteration period in a programmable DSP
implementation. The application of algorithmic strength reduction at numerical level
to reduce the implementation complexity will be discussed in the following seminar
(Chapter 15).

18

6. REFERENCE

[1] K. Parhi, VLSI digital signal processing systems: design and implementation. New
York: wiley, 1999.

[2] E. Ifeachor and B. Jervis, Digital signal processing: A practical approach.
Wokingham: Addison-wesley, 1993.

[3] S. winograd, "arithmetic complexity of computations," in Proceedings CBMS-
NSF regional conference series in applied mathematics,vol. 3, 1980.

19

7. PROBLEMS
Problems 1:

Express the 2-parallel filter algorithm:

in terms of post-processing matrix, a diagonal matrix, and a pre-processing matrix.
Obtain another 2-parallel structure using the transpose of this formulation.

Problems 38

A 3-parallel architecture for a rank-order filter with window size 5 has been derived in
Example 9.4.6. Design another 3 parallel architecture by considering y(3k), y(3k+1)
and y(3k+2) as a group. Draw detailed circuits for all mergers used in this
architecture.

()()101011001

11
2

000

HHXXXHXHY

XHzXHY

−−−+=
+= −

