
S-38.220

Postgraduate Course on Signal Processing in Communications,

FALL-99

Pipelining and Parallel Processing

Carl Eklund

Nokia Research Center

P.O. Box 407

FIN-00045 Nokia Group

E-Mail: carl.eklund@nokia.com

October 13, 1999

Abstract

This paper presents the techniques of pipelining and and parallel processing. Both methods
are commonly used for increasing performance in digital designs. Pipelining introduces latches
on the data path thus reducing the critical path. This allows higher clock frequencies or
sampling rates to be used in the circuit. In parallel processing logic units are duplicated
and multiple outputs are computed in parallel. The level of parallelism directly increases the
sampling rate. In addition to increasing performance both techniques can be used to reduce
power dissipation.

Contents

1 Introduction 2

2 Pipelining 2

3 Parallel processing 5

4 Combining pipelining and parallel processing 6

5 Low power design 6

5.1 Power reduction through pipelining . 9
5.2 Power reduction through parallel processing 9
5.3 Combining pipelining and parallel processing 10

6 Architecture eÆciency 10

6.1 EÆciency of parallel architectures . 11
6.2 EÆciency of pipelined architectures . 12

7 Conclusions 13

1

x

D

+

D

x

+

x

x(n)

y(n)

a b c

x(n-1) x(n-2)

Figure 1: Direct form implementation of 3-tap FIR �lter

1 Introduction

A three-tap �nite impulse response (FIR) �lter is given by

y(n) = ax(n) + bx(n� 1) + cx(n� 2): (1)

The direct form block diagram of the �lter is shown in �gure 1. From the �gure it can be
seen that the required to process a sample is equal to the time of a multiplication (TM) and
two additions (2TA). This is the execution time of critical path. The critical path sets a
condition

Tsample � TM + 2TA (2)

for the sampling period and thus the maximum sampling frequency is limited to

fsample �
1

TM + 2TA
: (3)

If this condition cannot be met the direct form structure must be discarded.
The e�ective critical path can be reduced by introducing pipelining registers on the data

path. The principle can be seen from �gure 2. The execution time of the critical path for the
structure in (a) is 2TA. In (b) the same structure is shown as a 2-staged pipelined structure.
A latch hs been placed between the two adders thus halving the critical path. This allows
operation at a higher sampling rate.

The throughput can also be increased with a completely di�erent technique. In �gure
2 (c) the hardware is duplicated so that two inputs can be processed simultaneously. This
parallel processing structure doubles the sampling rate.

2 Pipelining

To consider pipelining we need to introduce two de�nitions.

De�nition 1 (Cutset) A cutset is a set of edges in a graph such that removing the edges

makes the graph disjoint.

De�nition 2 (Feed-forward cutset) A cutset is a feed-forward cutset if data move in the

forward direction on all the edges of a cutset.

Adding latches on a feed-forward cutset of a FIR �lter leaves the functionality unchanged. In
�gure 4 a 2-level pipelined version of the three tap FIR �lter is shown. The critical path has

2

y(n)

+ +x(n)

a(n) b(n)

+ +x(2k+1)

a(2k+1) b(2k+1)

y(2k+1)

+ +x(2k)

a(2k) b(2k)

y(2k)

y(n)
D+ +

a(n) b(n)

x(n)

(a)

(b)

(c)

Figure 2: (a) A simple datapath. (b) Pipelined datapath. (c) Parallel datapath.

Figure 3: A graph with two cut-sets indicated by the dashed lines

3

Clock Input Node 1 Node 2 Node 3 Output

0 x(0) ax(0) + bx(�1)

1 x(1) ax(1) + bx(0) ax(0) + bx(�1) cx(�2) y(0)

2 x(2) ax(2) + bx(1) ax(1) + bx(0) cx(�1) y(1)

3 x(3) ax(3) + bx(2) ax(2) + bx(1) cx(0) y(2)

Table 1: Scedule of pipelined FIR �lter in �gure 4

x

D

+

D

x

+

xb c

D

D

a

x(n)

y(n)

3

1 2

Figure 4: 2-level pipelined implementation of a 3-tap FIR �lter. The dashed line shows the
cut-set

been reduced from TM +2TA to TM +TA. As can be seen from table 1 the output is available
only after two clock cycles as compared to one for the sequential implementation. In general
the latency of M -level pipelined circuit is M �1 clock cycles more than that of the sequential
circuit[1].

The throughput of the pipelined design is determined by the longest path between any 2
latches or between a latch and the in/output

RT ;M �
1

maxi TD;i + TD;latch

; (4)

where TD;i is the processing delay of stage i and TD;latch is the delay of the latch. In the
improbable situation that all the pipeline stages are equal the throughput is given by

RT ;M = RT;1 �M
TD;i + TD;latch

TD;i +MTD;latch

: (5)

This relation is, however, instructive as it shows that the throughput for large M -no longer
increases proportionally due to the delay of the pipeline latches.

Pipelining can be done with any granularity. Figure 5 shows how a 4-bit ripple adder can
be pipelined. Note the delay elements on the input operands and outputs due to the cut-sets.
The delays on the inputs assure that the carry bit and operands arrives simultaneously to the
adder cells. This technique is called pre-skewing. The delaying of some of the output bits,
called de-skewing, is necessary to assure simultaneous arrival of the sum bits. Note how the
cut-set method automatically and elegantly evaluates the delays required[2].

In FIR �lter design the practice of partitioning arithmetic function to sub-functions with
pipeline latches is sometimes referred to as �ne-grain pipelining.

4

A A AA

D
D

D
D

D
D

D D

D
D

DD

D D

D

D
D

D

D

D

D

b3 a3 b2 a2 b1 a1 b0 a0

s4
s3

s2

s1

s0

Figure 5: Pipelined ripple adder. The dashed lines show the cut-sets

Serial to parallel
converter

MIMO system
Parallel to serial

converter

Clock=T/3

Clock=T

Sample
period=T/3

x(3k+2) x(3k+1) x(3k)

y(3k)
y(3k+1)
y(3k+2)

x(n)

y(n)

Figure 6: Parallel processing system with blocksize=3

In the previous discussion we have assumed feed-forward cut-sets. Many commonly used
algorithms have feed-back loops and thus the cut-sets are not feed-forward. In the general
case the rule states that positive delay elements are placed on the edges entering the set of
cut-o� nodes while an equal negative delay must be place on the edges leaving the set to
keep functionality intact. As negative delay is impossible to implement, delay redistribution
techniques beyond the scope of this paper must be employed in these cases[2]. An excellent
discussion on this topic can be found in [3, 4].

3 Parallel processing

Any system that can be pipelined can also be processed in parallel. In pipelining independent
computations are executed in an interleaved manner, while parallel processing achieves the
same using duplicate hardware. Parallel processing systems are also referred to as block
processing systems. The block size indicates the number of inputs processed simultaneously.

5

x

D +D

x

+

xbc

y(n)

a

x(n)

Figure 7: Data broadcast implementation of 3-tap FIR �lter

A complete parallel processing system shown in �gure 6 contains a serial to parallel con-
verter (DMUX) the MIMO processing block and a parallel to serial converter(MUX). The
data paths in the MIMO system either work with an o�set of Tclk=M in a M -parallel system
or the MUX and DMUX must be equipped with delay units allowing simultaneous processing.

The throughput of a M -parallel system is M times the throughput of the sequential
system,

RT;M =M �RT;1: (6)

It should also be noted that for a parallel processing system Tclock 6= Tsample whereas they are
equal in a pipelined system[1, 2].

4 Combining pipelining and parallel processing

Parallel processing and pipelining can also be combined to increase throughput. Figure 7
shows the data broadcast structure of a 3-tap FIR �lter. In �gure 8 the 3-parallel implemen-
tation of the same �lter is shown. The throughput of the parallel �lter is three times that of
the original �lter. By introducing �ne-grain pipeline registers in the multipliers we end up
with the structure in �gure 9. If the cutset can be placed so that the processing delays of the
subcircuits are equal another factor two can be gained in the throughput[1].

5 Low power design

Pipelining and parallel processing are techniques to increase the sample speed. The same
techniques can be used to lower the power consumption at a given speed.

The propagation delay in a CMOS circuit is given by

Tpd =
CchargeV0
k (V0 � Vt)

(7)

where Ccharge is the capacitance that is charged/discharged in a single clock cycle, i.e. the
capacitance along the critical path. V0 is the supply voltage and Vt the threshold voltage of
the transistor. The constant k is technology dependent.

The power consumption can be estimated by

P = CtotalV
2
0 f: (8)

In the equation above Ctotal is the total capacitance of the circuit and f the clock frequency.
It should be noted that these equation are based on crude approximations and that the issues

6

x

+

x

+

xb

y(3k+1)

a

x

+

x

+

xb a

x

+

x

+

xba

c

c

c

D

D

x(3k+2) x(3k+1) x(3k)

y(3k+2)

y(3k)

x(3k-2)

x(3k-1)

Figure 8: 3-parallel implementation of the �lter in �gure 7

7

y(3k+1)

++

x(3k+2)
x(3k+1) x(3k)

y(3k+2)

y(3k)

D

x

x

D

x

x

D

x

x

++

D

x

x

D

x

x

D

x

x

++

D

x

x

D

x

x

D

x

x

D

D

x(3k-1)

x(3k-2)

Figure 9: Finegrain pipelined structure of the �lter in �gure 8

8

are much more complex. The low power techniques aim to lower the supply voltage and thus
reducing the power consumption. It should be remembered that the noise margin puts a lower
limit on the supply voltage that can be achieved.

5.1 Power reduction through pipelining

Next the method of lowering power consumption by pipelining is examined using a FIR
�lter as an example. The technique is, however, also applicable in other cases. The power
consumption of the non-pipelined FIR �lter can be estimated using equation 8 to be

Pseq = CtotalV
2
0 f: (9)

The clock frequency f is determined by the processing delay of the �lter. IfM pipeline latches
are introduced, the critical path is reduced to one Mth of the original and the capacitance to
be charged/discharged per cycle is now Ccharge=M . The introduction of the pipelining latches
increases the capacitance Ctotal but as a �rst approximation this increase can be neglected.
If we operate the pipelined circuit at the same frequency we note that since only fraction
of the original capacitance Ccharge is charged/discharged per cycle the supply voltage can be
reduced to �V0 where � is a positive constant less than 1. The power consumption of the
pipelined �lter is then reduced to

Ppip = Ctotal (�V0)
2 f = �2Pseq (10)

which is lower by a factor �2 as compared to the original implementation. The clock period is
usually set to equal the maximum propagation delay in a design. Noting that both �lters run
at the same frequency the factor � can be determined with the help of equation 7. Equating
the propagation delays results in the equation

M (�V0 � Vt)
2 = � (V0 � Vt)

2 (11)

from which � easily can be solved. The reduced power consumption of the pipelined �lter
can then be computed using 10[1].

The discussion above totally ignores the fact that probability of glitching is reduced in
the pipelined implementation due to the smaller logical depth. Glitches are short termed
charge/discharge e�ects that arise from non-uniform propagation times in networked combi-
natoric logic. Glitches can contribute signi�cantly to the power consumption. In the case of
a carry ripple adder the dissipation due to glitches can be as much as 22% of the total[5]. In
general complex simulations are needed to evaluate the power consumption due to glitching[6].

5.2 Power reduction through parallel processing

Parallel processing can also be used to reduce the power consumption by allowing reduction
of the supply voltage. In a L-parallel system the charging capacitance remains the same
whereas the total capacitance is increased by a factor of L. The serial to parallel and parallel
to serial converters required in a parallel processing system also add to capacitance and power
consumption but are neglected in the following discussion.

In a L-parallel system the clock period can be increased to LTseq without decreasing the
sample rate. As more time is available to charge the capacitance Ccharge the voltage can be

9

lowered to �V0. The propagation delay in the parallel implementation maintaining the sample
rate is

LTseq =
Ccharge�V0

k (�V0 � Vt)
2
: (12)

Substituting (7) for Tseq the quadratic equation

L (�V0 � Vt)
2 = � (V0 � Vt)

2 (13)

can be formed, from which � can be obtained. Once � is known the power consumption of
the L-parallel system can be calculated as

Ppar = LCcharge (�V0)
2 f

L

= �2V 2
0 f

= �2Pseq : (14)

As with the pipelined system the power consumption of the L-parallel system has been reduced
by a factor of �2 compared with the original system.

5.3 Combining pipelining and parallel processing

Pipelining and parallel processing can be combined in low power designs. The charging
capacitance is lowered by pipelining and parallelism is introduced to allow lower clock speeds.
The propagation delay of the parallel pipelined �lter is given by

LTseq =
(Ccharge=M) �V0

k (�V0 � Vt)
2

=
LCchargeV0

k (V0 � Vt)
2
: (15)

The quadratic equation
ML (�V0 � Vt)

2 = � (V0 � Vt)
2 (16)

is obtained and again � can be solved.

6 Architecture eÆciency

Architecture optimization aims at increasing the performance of a design. Throughput is
the measure of performance, but measuring it is often problematic. For DSP applications an
obvious choice is to measure the data input and result rates. Also computational power,RC

expressed in operations per unit of time is used instead of the throughput, RT . When com-
paring computational power the underlying word width has to be considered. Comparing an
8-bit architecture to a 32-bit architecture is like comparing apples to oranges.

The clock period, Tclk is a measure for both performance and throughput. The perfor-
mance in terms of computational rate is given by

RC =
nop
Tclk

(17)

with nop being the number of operations carried out in during the clock period. The through-
put is can be expressed

RT =
ns
Tclk

(18)

10

DMUX

f1

f2

fL

MUX

D

D D

D

D D

Figure 10: A parallel system with L-subfunctions

where ns is the number of samples input or output in the time interval Tclk. This number is
in samples per second and must be multiplied by the number of bits per sample to express
the value as bits per second. Often the the computational rate and the throughput are
proportional

RC =
nop
ns

RT (19)

and the proportionality factor gives the operations per sample.
In integrated circuits the cost of a circuit is dependent of chip size. The size again is

roughly proportional to the transistor count. The relationship between chip size and perfor-
mance is often used to measure the eÆciency of an architecture. The eÆciency can thus be
expressed as

�T =
RT

A

�C =
RC

A
: (20)

If (19) holds optimization of �T and �C leads to the same solution. Combining equations
18,17 and 20 we get the commonly used AT product

� �
1

ATclk
: (21)

6.1 EÆciency of parallel architectures

Now consider the parallel implementation of the identical logic modules shown in �gure 10.
The eÆciency will compared for various degrees of parallelism L. According to 6 the through-
put increases in proportion to L. A parallel implementation also consumes additional chip

11

f1 f2 fM
D D D D D

Figure 11: A pipelined system with M -stages

area Aa for data distribution and merging. Assuming this area is proportional to the degree
of parallelism exceeding 1 the chip area is given by

AL = LA1 + (L� 1)Aa

= A1

�
L+ (L� 1)

Aa

A1

�
: (22)

Combining equations 6 and 22 it follows that the eÆciency in terms of parallelism is

�L = �1
1

1 +
�
1� 1

L

�
Aa

A1

(23)

From the equation it can be seen the eÆciency is not improved through parallel processing if
additional hardware is required, but rather worsened[2].

6.2 EÆciency of pipelined architectures

In a pipelined structure the pipeline registers a�ect the critical path and the delay as well
as the chip size. If the logic is split into equal delay sub-functions the time dictating the
throughput is

TM =
T1 � Treg

M
+ Treg

=
T1

M

�
1 + (M � 1)

Treg
T1

�
: (24)

The index now represents an implementation with one �nal register while index M is for
a pipelined system with M pipeline registers, shown in �gure 11. The additional pipeline
register take up additional space on the die. The area is

AM = A1 + (M � 1)Areg

= A1

�
1 + (M � 1)

Areg

A1

�
: (25)

Combining the equations the expression

�M = �1
Mh

1� (M � 1) Areg

A1

i h
1� (M � 1) Treg

T1

i (26)

for the eÆciency can be derived. From the result it can be seen that the eÆciency increases
rapidly as long as the contributions of the pipeline registers and delay are insigni�cant. The
optimum value for M can be found to be

Mopt =

vuuut
�
1�

Areg

A1

��
1�

Treg
T1

�
AregTreg
A1T1

: (27)

12

In general when delay and size of the logic block is signi�cant compared to the contributions
from the pipeline register the value of Mopt is clearly larger than 1[2].

7 Conclusions

The techniques of pipelining and parallel processing have been discussed. Which technique
to employ in a speci�c design depends on factors such as functionality, chip area, power
consumption and complexity of the control logic. Up to certain limit pipelinging provides
signi�cant performance gains with little increase in chip area. It also reduces glitching in
the circuit. Throughput beyond that acheivable by pipelining can be attained by parallel
architectures. For parallel architectures the throughput scales almost linearly with chip area.

13

References

[1] K.K. Parhi. VLSI digital signal processing systems: Design and Implementation, chapter 3.
J. Wiley & Sons, 1999.

[2] P. Pirsch. Arcitectures for digital signal processing, chapter 4. J. Wiley & Sons, 1998.

[3] K.K. Parhi and D.G. Messerschmitt. Pipeline interleaving and parallelism in recursive
digital �lters { part I:pipelining using scattered look-ahead and decomposition. IEEE

Transactions on acoustics, speech and signal processing, 37(7), July 1989.

[4] K.K. Parhi and D.G. Messerschmitt. Pipeline interleaving and parallelism in recursive dig-
ital �lters { part II:pipelined incremental block �ltering. IEEE Transactions on acoustics,

speech and signal processing, 37(7), July 1989.

[5] A. Schlegel and T.G. Noll. The e�ects of glitches on the power dissipation of CMOScircuits.
Internal report, EECS department RWTH Aachen, February 1997.

[6] A. Schlegel and T.G. Noll. Entwurfsmethoden zur verringerung der schaltaktivt�at bei
verlustoptimierten digitale CMOS-schaltungen. In DSP Deutschland'95, September 1995.

14

