
S-38.220
Postgraduate Course on Signal Processing in

Communications,
FALL - 99

Pierre COULON

HUT/Communications Lab.
Otakaari 8 Fin-02015 HUT

Pcoulon@cc.hut.fi

Date: 01.11.1999

2

ABSTRACT

Nowadays, the users demand always smaller electronic devices such as mobile
phone. This paper deals with this problem and presents the folding techniques, which
are a practical way to reduce the number of functional units on the silicon area. As
the folding transformation produce numerous registers, this paper deals also with a
manner to reduce this number of registers. Some examples such as biquad filter
program are introduced in order to clarify the different steps of these techniques.

3

TABLE OF CONTENTS

ABSTRACT.. 2

1. INTRODUCTION .. 4

2. FOLDING TRANSFORMATION.. 5

2.1 EXAMPLE OF A SIMPLE FOLDING TRANSFORMATION... 5
2.2 BASIS OF THE FOLDING TRANSFORMATION. .. 6
2.3 FOLDING TECHNIQUE APPLIED ON THE BIQUAD FILTER... 7

3. REGISTER MINIMIZATION TECHNIQUES .. 10

3.1 LIFETIME ANALYSIS ... 10
3.2 DATA ALLOCATION USING FORWARD-BACKWARD REGISTER ALLOCATION 13

4. REGISTER MINIMIZATION IN FOLDED ARCHITECTURES 15

BIQUAD FILTER EXAMPLE. ... 15

5. FOLDING OF MULTIRATE SYSTEMS.. 18

6. CONCLUSIONS... 19

7. PROBLEM.. 20

4

1. INTRODUCTION

An important factor in designing DSP Architectures is the space occupied by
the integrated circuit which is directly link to the space used by the functional units on
the silicon area. A manner to reduce the area occupied by these units is simply to
reduce the number of units on the silicon area, which is done in applying a folding
transformation. By executing multiple algorithm operations on a single functional unit
(such as addition operations) or in other words in time multiplexing, the number of
functional units in the implementation is reduced, resulting in an integrated circuit
with low silicon area. This paper deals with the simpler case of a single clock but
these DSP architectures can be operated using multiple clocks.

Sometimes the DSP architecture is simple enough to use ad hoc techniques to
reduce the number of adders and multipliers, for instance, but in the general case we
need the systematic techniques described in this paper to design the time-multiplexed
architectures.

5

2. FOLDING TRANSFORMATION

2.1 Example of a simple folding transformation.

This simple example is giving in order to clarify the concept of folding. The
figure 2.1 shows an example of how 2 addition operations can be time-multiplexed on
a single pipelined hardware adder. This DSP circuit computes y(n)=a(n)+b(n)+c(n).

Fig 6.1

Figure 2-1: (a) A simple DSP program with 2 addition operations. (b) A folded
architecture where the 2 addition operations are folded to a single hardware adder

with 1 stage of pipelining.

Table 2-1: Operation of the first 6 Cycles of the folded hardware in fig 2-1(b)
Cycle Adder Input

(Left)
Adder Input

(top)
System output

0 a(0) b(0) -
1 a(0)+b(0) c(0) -
2 a(1) b(1) a(0)+b(0)+c(0)
3 a(1)+b(1) c(1) -
4 a(2) b(2) a(1)+b(1)+c(1)
5 a(2)+b(2) c(2) -

The table 2.1 gives the process of the folded program shown in figure 2-1(b).
Notice that one output sample is produced every 2 clock cycles, and one sample of
each input signal is consumed every 2 clock cycles (a(k) is used in cycle 2k) and
therefore each input has to remain valid for 2 clock cycles before changing. Moreover
it is important to notice that the first implementation requires 2 adders but computes
one iteration of the program in the time required to perform an addition: Tadd. On the
other hand, the folded implementation in fig 6.1 (b) uses only 1 adder but computes
one iteration of the program in 2*Tadd time. In general there is a compromise between

6

the number of functional units and the time spend to compute 1 iteration: if the
folding factor is N we might increase the computation time by a factor of N.

Moreover, while the folding transformation reduces the number of functional
units, it may also lead to an architecture, which uses a large number of registers. This
paper will present some technique to reduce the number of registers required to
implement a folded DSP architecture and to allocate data to these registers. These
techniques are important to keep the area consumed by memory to a minimum.

2.2 Basis of the folding transformation.

This section deals with the mathematical considerations about folding.
Consider the edge e connecting the nodes U and V with w(e) delays, as shown

in Fig. 2-2-1.

Fig 6-2-a

Figure 2-2-1: An edge e, U����������	
��	����

Let the executions of the l-th iteration of the nodes U and V be scheduled at the
time units Nl+u and Nl+v, respectively, where u and v are the folding orders of the
Nodes U and V that satisfy 0 u , v N-1. Note that the folding order of a node is the
time partition to which the node is scheduled to execute in hardware. The functional
units that execute the nodes U and V are denoted as HU and HV, respectively. Note
that N is the number of operations folded to a single functional unit and is also
referred to as the folding factor. If HU is pipelined by PU stages, then the result of the
l-th iteration of the node U is available at the time unit Nl+u+Pu. Since the edge e has
w(e) delays, the result of the l-th iteration of the node U is used by the (l+w(e))-th

iteration of the node V, which is executed at N(l+w(e))+v. Therefore, the result must
be stored for:

time units, which is independent of the iteration number l. The edge e is implemented
as a path from HU to HV in the architecture with DF(U��
��F(e) delays, and data on
this path are input to HV at Nl+v, as it is shown in Fig 2-2-2.

[] [] uvPeNwuPNlvewlNVUD UU
e

F −+−=++−++=→)())(()(

7

Fig 6-2-b

Figure 2-2-2: The folded path corresponding to fig2-2-1. The data begin at the
functional unit HU which has PU pipelining stages, pass through DF(U��
��	����

and are switched into the functional unit HV at the time instances Nl+v.

Definition of a folding set:
A folding set contains N element (N is the folding factor)

In folding set, the elements are
- executed by the same functional units
- ordered: the j-th element is executed during the time partition j.
Ex: S1={A1,�,A2}
A1 can be denoted as (S1|0) and A2, (S1|2). The null operation (S1|1) implies that the
functional unit will not be utilized at time instances 3l+1.

2.3 Folding technique applied on the biquad filter

As an example is always very useful to understand a process, the aim of this
section is to analyze the folding technique on the retimed biquad filter

In this example, assume that addition and multiplication require 1 and 2 u.t.,
and 1 stage pipelined adders and 2 stage pipelined multipliers are available: PA=1 and
PM=2.

fig 6.3

Figure 2-3-1: The retimed biquad filter with valid folding sets assigned

The folding factor is 4. That means that the iteration period is 4 u.t and each
node of the biquad filter is exactly executed on every 4u.t in the folded architecture. In
the new architecture, each functional unit execute 4 operations of the DSP program.

8

Folding sets:
S1={4,2,3,1}, only addition operations
S2={5,8,6,7}, only multiplication operations

The folded architecture is obtained from the Data-Flow Graph Fig 2-3-1 by
writing the folding equation for each of the 11 edges in the DFG.

DF(U����N(w(U���)-PU+v-u

DF(1��������	�
�	���

DF(1��������	�
	��

DF(1��������	�
�	���

DF(1��������	�
�	���

DF(1��������	�
�	���

DF(3�������	�
�	��

DF(4�������	�
�	�

DF(5�������	�
�	�

DF(6��������	�
	��

DF(7��������	�
�	���

DF(8��������	�
	���

DF(1������������ ����� ��� ���� ������� ��������� ��!� ������ ��� ��� ��"�� ����� ���

adder to the multiplier with 5 delays. As the node 8 corresponds to (S2|1) the folded
edge 1�������#����������������$ ���������� ���$��������4l+1.

Fig 6-4

Figure 2-3-2: The Folded biquad filter using the folding sets given in2-3-1

We need DF(U����ƒ 0 for every DF.
Retiming can used to either satisfy this property or determine that the folding

sets are not feasible.
Using retiming, the number of delays on the edge U����������"��������w(e)

to wr(e)=w(e)+r(V)-r(U)

9

wr(e) is the number of delays in the retimed DFG, and r(X) is the retiming value of the
node X.
After retiming, the constraint can be written:
D´F(U��
�����	
����
����

��U+v-u ≥ 0

as r(U) and r(v) are integers:

Taking the previous example about the biquad filter, we have the following table:

Table 2-3-1: Folding Equations and Retiming for Folding Constraints
Edge Folding Equation Retiming for

Folding
Constraints

1�� DF(1����	� r(1)-r(2) ≤-1
1�� DF(1���� r(1)-r(5) ≤0
1�� DF(1����� r(1)-r(6) ≤0
1�� DF(1����� r(1)-r(7) ≤1
1�� DF(1����� r(1)-r(8) ≤1
3�� DF(3���� r(3)-r(1) ≤0
4�� DF(4���� r(4)-r(2) ≤0
5�� DF(5���� r(5)-r(3) ≤0
6�� DF(6����	� r(6)-r(4) ≤-1
7�� DF(7����	� r(7)-r(3) ≤-1
8�� DF(8����	� r(8)-r(4) ≤-1

The retiming technique tell us that if the constraint graph contains a negative
cycle then there is no solution else one solution is r(i) which is the shortest path from
the node 9 to the node i as shown in Fig 2-3-4

Fig 6-5

Figure 2-3-3: The original DFG resulting in some negative folded edge delays. The
retimed DFG resulting in all nonnegative folded edge delays is shown in Fig 2-3-1

 →≤−
N

VUD
VrUr

e
F)(

)()(

10

Fig 6-6

Figure 2-3-4: The constraint graph for the set of inequalities in the right-hand column
of Table 2-3-1. Node 9 is the host node.

One solution is here: r(1)=-1, r(2)=0, r(3)=-1, r(4)=0, r(5)=-1, r(6)=-1, r(7)=-2
and r(8)=-1. Another practical way to reach the result is using cutsets. Note that the
edge with negative DF are 1��!����!����!����%� &��#�� ����#�����'�� ��� ���� ��"�

U�������������������(F by Nw. Thus we just have to increase the number of delays
on each edge and that can be done by using cutsets retiming for the cutsets marked c1
and c2 in the previous figure. Note that the resulting DFG is exactly the DFG on
figure 2-3-1.

3. REGISTER MINIMIZATION TECHNIQUES

The aim of this section is to reduce the number of registers used in the DSP
architecture to keep a small area used by memory on the silicon.

3.1 Lifetime Analysis

First of all, some words about the data life. A data sample or variable is live
from the time it is produced until the time it is consumed then it’s dead. Each variable
need 1 register during each time unit it is live. In lifetime analysis, the number of live
variables at each time unit is computed, and the max number of live variables at any
time is equal to the minimum number of registers required to implement the DSP
program.

11

Fig 6.7

Figure 3-1-1: (a) A linear lifetime chart. (b) The linear lifetime chart explicitly
showing 3 iterations of the DSP program assuming the period is N=6. (c) The linear

lifetime chart implicitly taking into account the periodicity of the DSP program
assuming the period is N=6

The variable is not live during the time it is produce but is live during the
clock cycle in which it is consumed.

In the following example, we take 3 variables a, b, c. For instance, a is live
during {1,2,3,4}. We have to pay attention to the periodic nature of the DSP program.
The effect is shown in the Figure 3-1-1-c. Here, the number of registers require is 2 in
the case (a) and 3 in taking into account the periodic nature which is always
necessary.

Generally, a lifetime analysis begins with the construction of a lifetime table.
In the example of the transpose operation of the 3x3 matrix

Thus we have the table:

Table 3-1-1: Lifetimes for 3x3 Matrix transpose Operation without latency.

Sample Tinput Touput
a 0 0
b 1 3
c 2 6
d 3 1
e 4 4
f 5 7
g 6 2
h 7 5
i 8 8

 →

ifc

heb

gda

ihg

fed

cba
transpose

12

But in this table we have sometimes Toutput-Tinput negative is unrealistic. Thsu we
have to add a latency in order to have Tdiff nonnegative. Thus we have with Tl=4:

Table 3-1-2: Lifetimes for 3x3 Matrix Transpose Operation

Sample Tinput Touput without
latency

Tdif Touput Life Period

a 0 0 0 4 0��

b 1 3 2 7 1��

c 2 6 4 10 2��

d 3 1 -2 5 3��

e 4 4 0 8 4��

f 5 7 2 11 5���

g 6 2 -4 6 6��

h 7 5 -2 9 7�)

I 8 8 0 12 8���

With this Table and knowing that the period N is 9 we can draw the lifetime
chart. Another way to represent a lifetime chart is to use a circular lifetime chart
which help to see the periodic effect.

Fig 6-8

Figure 3-1-2: The linear lifetime chart for the 3X3 matrix transposer with period
N=9.

13

Fig 6-9

Figure 3-1-3: The circular lifetime chart 3x3 matrix transposer. The corresponding
linear lifetime chart is in Fig 3-1-2.

3.2 Data Allocation Using Forward-Backward Register Allocation

Thanks to the lifetime chart, we have obtained the minimum number of
registers required. It is now necessary to allocate the data to these registers and the
following technique, called Forward-Backward Register Allocation will help us to do
so.

The steps to perform the Data Allocation are:

Step 1: Determine the minimum number of registers using the lifetime analysis.

Step 2: Input each at the time step corresponding to the beginning of its lifetime. (for
instance: a is the first input variable). If multiple variables are input in a given cycle,
these are allocated to initial register and the other variables are allocated to
consecutive registers in decreasing order of lifetime.

Step 3: Each variable is allocated in a forward manner until it is dead or it reaches the
last register. In forward allocation, if Ri (register i) holds the variable in the current
cycle, then Ri+1 hold the same variable in the next cycle. If Ri+1 is not available, then
the variable is allocated to the first available forward register.

Step 4: Since the allocation is periodic, the allocation. The allocation of the current
iteration also repeats itself in subsequent iterations. Thus, if Ri is occupied in cycle l,
then Ri would occupy the same variable in cycle N+l => hash the position for Ri at
time unit l+N for each j and l.

Step 5: For variables that reach the last Rl and are not yet dead, the remaining period
of life is calculated and these variables are allocated in backward manner on a first-
come first-served level basis. If several Ri are available for the backward allocation:

- try to choose a Ri such that backward allocation Rl�Ri has already been
performed.

14

- if there are multiple R after the first sort, choose the R with the minimum
number of forward registers among all candidates that have a sufficient number of
frwd R to complete the allocation of the variable.
After a variable has been allocated backward, allocate it forward until it is dead or it
reaches the last register.

Step 6: Repeat steps 4 and 5.

This technique is applied on the previous example: 3x3 matrix transposer and
the result table is given below:

Fig 6.10

Figure 3-2-1: The allocation table for the 3x3 matrix transposer after steps 1 through
4 of forward-bacward register allocation have been performed. (b) The allocation

table after the allocation has been completed.

Analyse of this example:

Step 1: 4 registers are needed according to the lifetime chart.

Step 2: each variable is input at the cycle corresponding to the beginning of its
lifetime. NB: No cycles have more than 1 input in this example.

Step 3: allocation in forward manner

Step 4: hashing(cells in grey) to avoid conflicts.

Step 5: figure 3-2-1-b backward allocation is performed.

15

4. REGISTER MINIMIZATION IN FOLDED ARCHITECTURES

The aim of this section is to apply the previous technique of register
minimization described in 3 to a DSP circuit in folded architecture.
The basic procedure is as follows:
1. Perform retiming for folding

2. Write the folding equations

3. Use the folding equation to construct a lifetime table

4. Draw the lifetime chart and determine the required number of registers

5. Perform forward-backward register allocation

6. Draw the folded architecture that uses the minimum number of registers.

4.1 Biquad filter example.

Figure 4-1-1: The allocation table for the 3x3 matrix transposer after steps 1 through

The DFG after retiming for folding can be seen in figure 2-3-1. The folded
architecture without any register minimization is shown in figure 2-3-2. This
architecture uses 6 registers (the 3 pipelining registers that are internal to the adder
and mutliplier are not counted).

As step 1 and 2 have already been performed (folding equations can be seen in
section 2-3), we now have to construct the lifetable:

Table 4-1-1: Lifetimes for the Retimed Biquad Filter Shown in Fig 2-3-1

node Tinput�*output

1 4�)

2 -
3 3��

4 1��

5 2��

6 4��

7 5��

8 3��

D

D

IN OUT

a b

c d

16

Note:
In the table, there is one entry for each node in the DFG

Tinput for the node U is equal to : Tinput = u+Pu
(u folding order of U, Pu number of pipelining stages in the functional unit HU)
Tinput is the time unit in which the node produces data for the 0th iteration of the DSP
program. Ex for the node 1: Tinput=3+1=4

Toutput for the node U is equal to: Touput=u+PU+maxV{DF(U��
�

maxV{DF(U��
��represents the longest folded path delay among all edges that begin
at the node U. This value of Touput is the latest time that the result of the 0th iteration
of the node is used. Ex for node 1: Touput=3+1+max{1,0,2,3,5}=9

No latency is required in this DSP program.

The lifetime chart is drawn:

Fig 6.14

Figure 4-1-2: The lifetime chart corresponding to the lifetime table in Table

Note:
Period N=4.
2 registers are required.

The next step is to perform Forward-Backard register allocation:
Note:
ni is the output of node i.
Only the variables with nonzero duration are shown. (n1,n7 & n8)

17

Fig 6.15

Figure 4-1-3: The allocation table for the folded biquad filter.

The folded biquad filter architecture can now be synthesized.

Fig 6-16

Figure 4-1-4: A folded biquad filter architecture using the minimum number of
registers, which is 2.

Note:
For example: (1��
�has DF(1��
�� delay. This edge starts at the node 1, and

after 1 delay the variable n1 is located in he register R1 in Fig 4-1-3, so there exists an
edge from R1 to the adder at the to time instances 4l+1 because the node has folding
order 1. Another example is (1�7) has DF(1�7)=3 delays, and the variable n1 is in
R2 after 2 delays, so there is an edge from R2 to the multiplier at the time instances
4l+3 because node 7 has folding order 3.

In this folded architecture the number of registers has been reduced from 6 to 2.

18

5. FOLDING OF MULTIRATE SYSTEMS
This section deals with folding of multirate systems. Multirate system contains

decimators and expanders:

decimator: yd(n)=x(Mn)
expander ye(n)=x(n/M) if n=kM, 0 otherwise

This functional unit change the data rate.

In the case of a decimator:

Analysis of the DFG below:

Fig 621 (A)

The l-th iteration of the node U is executed at the time unit Nl+u and the l-th
iteration of the V is executed at the time unit Nvl+v=(NM)l+v.

In the figure above we have the relations between the variables:
s1(l)=x(l-w1)
s2(l)=s1(Ml)=x(Ml-w1)
y(l)=s2(l-w2)=x(M(l-w2)-w1)

and we deduce from these equations
DF(U→V)= N(Mw2+w1)-PU+v-u.

Example:

N=2
Nv0=Nv1=Nv2=Nv3=6
The folding orders are u=1, v0=1,v2=4 and v3=5.
And PU=1

19

The Folding equations are thus:
DF(U→V0)=2(3(1)+2)-1+1-1=9
DF(U→V1)=2(3(0)+1)-1+2-1=2
DF(U→V2)=2(3(0)+3)-1+4-1=8
DF(U→V3)=2(3(2)+0)-1+5-1=15

In this figure, the number of registers can be reduced using lifetime analysis.
Moreover, the equations above to be useful, DF(UV)>=0 must hold given a feasible
schedule. Retiming for folding can be used for multirate DFG in a manner similar to
that used in single rate DFG.

6. CONCLUSIONS

Folding is a systematic transformation technique for design of time-
multipexed architectures. Although folding circuits requires less silicon area, these
can be operated at higher speed by exploiting the fine-grain pipelining of the
functional units. This result in no net loss in the sampling rate of the system for small
folding factors. Folding sets can be designed by any scheduling and allocation
techniques. Lifetime analysis can be used to reduce the number of storage units in
folded circuit.

REFERENCES

[1] K.K. Parhi, VLSI Digital Signal Processing: FOLDING, Chap 6, J. Wiley &
Sons, 1999

[2] K.K. Parhi, "Calculation of minimum number of registers in arbitrary life time
chart", IEEE Trans, on circuits and Systems-II, vol. 41,no 6,pp 434-436, June
1994

[3] Denk, T.C.; Parhi, K.K, "Synthesis of folded pipelined architectures for multirate
DSP algorithms" VLSI Systems, IEEE Transactions on Volume: 6 4 , Dec. 1998 ,
Page(s): 595 -607

20

7. PROBLEM

Figure 7-1: The DFG to be folded

a) Perform retiming for folding on the DFG in fig 7-1 so that the folding sets
shown below result in nonnegative edge delays in the folded architecture. Assume that
the folding factor is N=5, and assume that each multiplier is pipelined by 2 stages and
each adder is pipelined by 1 stage. Each operator is clocked with clock period of one
u.t. Note that ∅ represents a null operation.

SM1={M 2, M1, M3, M6, M7}

SM2={M 4, ∅, M5, M8, M9}

SA1={A 4, ∅, A1, A2, A3}

SA2={A 5, A6, A7, A8, ∅}

b) Fold the retimed DFG obtained in question a) using the folding sets given in
question a).

D

D

A2 A4

A3A1 M2 M3

M4 M5

D

D

A6 A8

A7A5 M6 M7

M8 M9

M1

