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1 Introduction

This report gives an overview on the code selection principles with emphasis on the CDMA

system code design. Since the pseudo-noise sequence research is a vast area of study, our

emphasis has been a main factor when deciding the range of issues that are covered.

The report begins with some general background, mainly some CDMA system design

issues and the basic properties of the PN sequences, including the various correlation

functions. After that some widely used spreading sequences are presented with their basic

properties, together with some well-known bounds that have a major impact on the code

design. Finally, some results of the performace study done in [K�ar96] is described and

some conclusions are drawn from those results.

2 CDMA system design aspects

In general, the spread spectrum signals are commonly used for [Pro92]

� combatting or supressing the detrimental e�ects of interference due to jamming,

interference arising from other users of the channel, and self-interference due to

multipath propagation;

� hiding a signal by transmitting it at low power and, thus making it di�cult for an

unintended listener to detect in the presence of background noise;

� achieving message privacy in the presence of other listeners.

The desired properties of PN sequences depend clearly on the target application. Since

our goal is to study the code selection for CDMA systems, the main emphasis is on the

control of the interference arising from other users of the channel. The detailed require-

ments depend on the target system type, such as whether the system is a military or

civilian system, is it a cellular system, what are the code length requirements and is the

mode of operation synchronous or asynchronous. These high-level requirements induce

requirements in code design for the various properties of the target code, such as the auto-

and cross-correlation and the pseudo-noise (balance, run distribution, power spectrum)

properties. In practice a choise must be made to select some parameters to be emphasized

in the design, such as the maximal vs. the mean square-sum correlation value.

3 General Properties of PN Sequences

This section gives a brief overview on the necessary background for understanding the

pseudorandom sequences and their properties. The emphasis will be on the properties
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relevant to CDMA code design. This includes the de�nitions of various cross- and auto-

correlation functions as well as the key pseudo-noise properties usually required.

3.1 Statistical properties of PN sequences

In general, the SSMA chip sequences are assumed to be statistically independent, identi-

cally distributed random processes, i.e. Bernoulli sequences. thus the sequences used for

the generation of spread spectrum signals should have the same key \randomness" prop-

erties as a truly random Bernoulli sequence. These key properties, the three randomness

postulates of Golomb can be characterised as follows([Vit95]):

Balance Property Relative frequences of \0" and \1" are each 1=2.

Run Property Run lengths (of zeros or ones) are as expected in a Bernoulli sequence.

Shift Property If the random sequence is shifted by any nonzero number of elements,

the resulting sequence will have an equal number of agreements and disagreements

with the original sequence.

In practice, especially the short code period CDMA sequences are designed to have low

time cross-correlation, so they are only quasi-orthogonal and thus the sequences in short-

code CDMA systems are not statistically independent. With longer code period, the

CDMA sequences behave more like Bernoulli sequences. The long-code CDMA systems

are in fact sometimes called (pseudo)random (R-CDMA) systems as opposed to short-code

deterministic (D-CDMA) systems.

3.2 Periodic and Aperiodic Correlation Functions

The correlation properties of PN codes play a major part in the code design for CDMA

systems, since they determine not only the level of multiple access interference, i. e. the

interference arising from other users of the channel and self-interference due to multipath

propagation, but also the code acquisition properties. The �rst on is a�ected by the

cross-correlation properties between di�erent codes of the family whereas the last two are

a�ected by the auto-correlation properties, that is the correlation between time-shifted

versions of the same code. There are several variants of correlation functions:

De�nition 1 Let fu(t)g and fv(t)g be (complex valued) sequences of length (or period)

N . The aperiodic cross-correlation function of the sequences fu(t)g and fv(t)g is de�ned
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Figure 1: Aperiodic correlation

by

�u;v(�) =

8>>>>><
>>>>>:

N�1��X
t=0

u(t+ �)v�(t) if 0 � � � N � 1,

N�1X
t=��

u(t+ �)v�(t) if 1�N � � < 0.

(1)

The periodic (or even) cross-correlation function of the sequences fu(t)g and fv(t)g is

de�ned by

�u;v(�) =
N�1X
t=0

u(t+ �)v�(t) = �u;v(�) + �u;v(� �N): (2)

The odd cross-correlation function of the sequences fu(t)g and fv(t)g is de�ned by

�̂u;v(�) = �u;v(�)� �u;v(� �N): (3)

When the sequences u and v are the same one speaks about autocorrelation functions,

denoted by �u and �̂u. The �gure 3.2 illustrates the meaning of positive and negative

values of � . The di�erence between even and odd cross-correlation becomes clear if one

considers a spread spectrum system where a sequences is produced from a PN sequence

through modulation by a data sequence. Then the odd (resp. even) cross-correlation

occurs when the consequent data bits are the di�erent (resp. the same).

The aperiodic correlations give more realistic estimates of the CDMA system perfor-

mance as the periodic ones do. However, since the problem of designing sequence families

with low aperiodic correlation is a di�cult one, the conventional approach has been to de-

sign based on periodic correlation properties and to subsequently to analyze the aperiodic

properties of the resulting design.
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4 Some known families of spreading sequences

In this section we will present some of the most common PN code families, namely

the Walsh-Hadamard codes, m-sequences, Gold-codes and Kasami-codes. The Walsh-

Hadamard codes are orthogonal on zero code delay whereas the m-sequences, Gold-codes

and Kasami-codes are non-orthogoal with varying cross-correlation properties.

4.1 Walsh-Hadamard codes

The Walsh-Hadamard codes are generated as follows: Let

H2 =

 
+1 +1

+1 �1

!
(4)

and, if M > 2 is a power of 2, recursively

HM =

 
+HM=2 +HM=2

+HM=2 �HM=2

!
(5)

Then the rows of any HM form a mutually orthogonal set of sequences. As mentioned

above these sequences have zero cross-correlation when the codes are synchronous, but

when asynchronous, their cross-correlation is very much dependent on the particular pair

of codes used, some will have cross-correlation zero while others will have a very high

correlation. In addition, these codes have a number of drawbacks [Gla96]:

� The codes do not have a single, narrow autocorrelation peak. In fact the non-peak

auto-correlation is depedent on the actual code word, but it's never zero.

� The spreading is not over the whole bandwidth, but over a number of discrete fre-

quency components. This may be seen in �gure 4.1, where the amplitude spectrum

of one Walsh sequence of period 64 and an m-sequence of length 63 is compared.

See section 4.2 for more information about m-sequences.

� The partial cross-correlation is not always identically zero making the family unsuit-

able for asynchronous application.

Despite of these drawbacks the Walsh-Hadamard sequences are used in IS-95 system for

channel separation. In this case a separate PN sequence is used for spreading (an m-

sequence).

4.2 m-sequences

The maximum-length shift-register sequence, or m-sequence for short, is probably the

most widely known PN sequence. It has a length of n = 2m � 1 bits and is generated by
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Figure 2: Amplitude spectrums of m- and Walsh sequences

an m-stage shift register with linear feedback as shown in �gure 4.2. Each clock time the

register shifts all contenets to the left. The rightmost element of the register is updated

as a linear combination of the register content, that is according the recursive formula

s(t+m) =
m�1X
i=0

fist+i for all t. (6)

The coe�cients fi are called the connection variables. If we set fm = 1 we may de�ne

the characteristic polynomial of the sequence fs(t)g as f(x) =
Pm

i=0 fix
i. Not all possible

connection parameter sets produce a maximal sequence. One can derive the following

necessary condition for the maximality (See [Vit95]):

Theorem 1 The sequence fs(t)g is maximal if the characteristic polynomial of the se-

quence is irreducible (not factorable).

The m-sequences have the balance, run and shift properties. The periodic (even) auto-

correlation function of an m-sequence of length n is

�u(j) =

(
n if j = 0,

�1 if 1 � j � n� 1.
(7)
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Figure 3: An m-stage shift register with linear feedback

The pseudo-noise properties as well as the autocorrelation formula can be proved directly,

but they also follow naturally from some general results of the theory of �nite �elds, when

the m-sequence is considered as a trace code. For more details see [Hel96].

The m-sequences are almost ideal when viewed in terms of their autocorrelation func-

tion. In CDMA, however, the cross-correlation properties of the sequence play a central

role as seen in section 5. Unfortunately the periodic (or even) cross-correlation between

any pair of m-sequences of the same period can have relatively high peaks ([Pro92]) that

are undesirable in CDMA. It is of course possible to select a small subset of m-sequences

that have smaller cross-correlation peak values, but the size of the set is usually too small

for CDMA applications. One can use m-sequences to derive PN sequence families with

better cross-correlation properties. These sequences are the subject of the next section.

4.3 Sequences with low cross-correlation

Even though the cross-correlation of m-sequences in general may have large peaks, Gold

and Kasami have proved ([Gol68], [Kas66]) that certain pairs of m-sequences of length n

exhibit a conivient three-valued cross-correlation function with values f�1;�t(m); t(m)�
2g, where

t(m) =

(
2(m+1)=2 + 1 (odd m)

2(m+2)=2 + 1 (even m)
(8)

Such sequences are called preferred sequences. These sequences may be utilised to produce

several well known families of binary sequences with good cross-correlation properties.

These families (called Quadratic Form Sequences in [Hel96]) include the Gold and Kasami

sequences.
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Gold sequence

Figure 4: Generation of Gold sequences of length 31

4.3.1 Gold sequences

Given a preferred pair of sequences of period n = 2m � 1, say s = fs(t)g and r = fr(t)g,
we can construct a new family of sequences by taking the modulo-2 sum of s with the n

cyclicly shifted versions of r or vice versa. Thus, we obtain n new periodic sequences with

period n. If we include also the original sequences s and r we obtain a family of n + 2

sequences. The resulting sequences are called Gold sequences. Figure 4.3.1 shows the shift

registers for generating a preferred pair of sequences corresponding the polynomials

g1(x) = x5 + x2 + 1

g2(x) = x5 + x4 + x2 + x+ 1:

In this case, there are 33 di�erent sequences, corresponding to the 33 relative phases of

the two m-sequences.

The cross-correlation function for any pair of sequences in the family of Gold sequences

generated with a given preferred pair was proven by Gold to be three-valued with pos-

sible values f�1;�t(m); t(m) � 2g, where t(m) was de�ned in Eq. 8. The Gold codes

from \di�erent" Gold code groups have however bad correlation properties, even when

synchronised.

With the obvious exeption of s and r, the set of Gold sequences does not contain

maximum-length shift-register codes of length n. Thus the auto-correlation functions are

not two-valued. Similary to the cross-correlation function, the o�-peak auto-correlation

function is three-valued and takes the values from the set f�1;�t(m); t(m) � 2g. Hence

the o�-peak values of the auto-correlation function are upper-bounded by t(m).

Table 4.3.1 (from [Pro92]) illustrates the di�erences between m- and Gold sequences.

For various values of m, the table shows the values of the peak-cross-correlation between
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Table 1: Cross-correlation of m- and Gold sequences

Number

m n = 2m � 1 of m-sequences �c �c=�u(0) t(m) t(m)=�u(0)

3 7 2 5 0.71 5 0.71

4 15 2 9 0.60 9 0.60

5 31 6 11 0.35 9 0.29

6 63 6 23 0.36 17 0.27

7 127 18 41 0.32 17 0.13

8 255 16 95 0.37 33 0.13

9 511 48 113 0.22 33 0.06

10 1023 60 383 0.37 65 0.06

11 2047 176 287 0.14 65 0.03

12 4095 144 1407 0.34 129 0.03

the m-sequences (�c) and the values of the upper bound for Gold sequences (t(m)). Also

included are the ratios �c=�u(0) and t(m)=�u(0) that illustrate how for Gold sequences the

peak cross-correlation value is a large percentage of the peak auto-correlation value.

4.3.2 Kasami sequences

A procedure similar used in the generation of Gold sequences can be used to generate a

smaller set of M = 2m=2 binary sequences of period n = 2m � 1, where m is even. In this

procedure, we begin with an m-sequence s and we form a binary sequence r by taking

every 2m=2 + 1 bit of s. In other words, the sequence r is formed by decimating s by

2m=2 + 1. It can be veri�ed that the resulting r is periodic with period 2m=2 � 1.

Now, by taking n = 2m�1 bits of the sequences s and r, we form a new set of sequenes

by adding, modulo-2, the bits from s and all 2m=2 � 2 cyclic shifts of the bits from r. By

including s in the set, we obtain a set of 2m=2 binary sequences of length n = 2m�1. These

are called the (small set of) Kasami sequences. The autocorrelation and cross-correlation

functions of these sequences take on values from the set f�1;�(2m=2+1); 2m=2�1g. Hence,
the maximum cross-correlation value for any pair of sequences from the set is

�c = 2m=2 + 1 (9)

4.3.3 Bounds on Crosscorrelation of Sequences

There are several bounds on the cross-correlation of sequences known. The most com-

monly used are the Welch bound and the Sidelnikov bound. The Welch bound applies to
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comples-valued sets with no further constraints on their sequence elements while th esidel-

nikov bound only applies to complex roots-of-unity sequences with a constant amplitude.

These bounds are useful when estimating the cross-correlation behaviour of di�erent code

families.

A lower bound for the peak cross-correlation value for any pair of binary sequences of

period n developed by Welch [Hel96] for �max is

�max � n

s
M � 1

Mn� 1
; (10)

whereM is the size of the family and �max = maxf�a; thetacg (�a is the maximum absolute

sidelobe value of the even auto-correlation function). For large values of n and M , this

bound is well approximated with
p
n. Sets achieving this value are said to be asymp-

totically optimal with respect to Welch bound. The (small set of) Kasami sequences for

instance have this property.

The Sidelnikov bound states that for any set with m � n ([K�ar96]):

�max >
p
2n� 2: (11)

Sidelnikov bound is typically tighter than Welch bound by a factor of
p
2 for a large set

size. The main impact of these bounds is that they dictate the limits within which all code

designs must lie. Thus it is not possible to independently design the correlation value and

the set size, but it is necessary to allow the increase of the maximum absolute correlation

value in order to increase the set size for given code length.

There also exists a bound which connects the auto-correlation and cross-correlation

properties of sequences thus preventing the independent design of the desired auto-correlation

and cross-correlation values. This bound is ([K�ar96]):(
�2c
n

)
+

n� 1

n(M � 1)

(
�2a
n

)
� 1: (12)

5 Code Selection Criteria for CDMA Systems

In CDMA systems, the traditional method in spreading code selection for the reduction of

multiple-access interference is to use the maximum absolute value of the periodic (even)

cross-correlation function. The average signal-to-noise power ratio (SNR) performance

of an asynchronous DS/SSMA system investigated in [K�ar96] was somewhat surprisingly

found to be about the same with various kinds of linear spreading code families of equal

period and set size, although the corresponding maximum periodic cross-correlation pa-

rameters for those families di�er considerably. Since all cross-correlation values, not just

peak values, a�ect the system performance, it is proposed in [K�ar96] that a natural design

parameter for system performance measure is the mean-square cross-correlation value.
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Table 2: Correlation parameters for CDMA families (adapted from [K�ar96])

Family p �c ri;j
Pp�1

k=0 �
2
i;j(k)

Pp�1
k=0 �̂

2
i;j(k)

Gold 31 9 1674 895 1031

m-sequence 31 9 1742 991 927

Gold 63 17 7398 3807 4479

Kasami 63 9 6982 3519 3439

m-sequence 63 23 8006 4031 4079

Gold 1023 65 2093414 1043583 1081759

Kasami 1023 33 2094766 1010815 1105951

m-sequence 1023 95 2059262 1047551 1002431

The average signal-to-noise power ratio at the output from a BPSK type asynchronous

DS/SSMA receiver of the j-th user can be expressed in terms of the sum of the average

interference parameters (AIP) ri;j of K simultaneous users, and the SNR of the AWGN

channel (Eb=N0) as follows

SNRj =

8<
: N0

2Eb
+

1

6p3

KX
i=1;i6=j

ri;j

9=
;
�1

(13)

where the average interference parameter is de�ned as ri;j = 2�i;j(0)+�i;j(1). In the case

of binary sequences the expression for �i;j(n) can be de�ned simply as

�i;j(n) =

p�1X
m=1�p

Ci;j(m)Ci;j(m+ n) (14)

where p is the period of the sequence. On the other hand, the average interference param-

eter can be expressed in form ([K�ar96])

ri;j =

p�1X
k=0

�2i;j(k) +

p�1X
k=0

�̂2i;j(k) + �i;j(1): (15)

From 15 and 13 it can be predicted that the average (SNR) performance of an asyn-

chronous, BPSK type DS/SSMA system depends strongly on the square-sums of both

even and odd cross-correlation values and thus on the mean-square cross-correlation val-

ues of both even and odd functions.
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Various unnormalised cross-correlation parameters are presented in table 5 (from [K�ar96])

for some well-known linear code families of a large range of periods. Each pair of sequences

was selected randomly from the code families studied. It is clear that some other choise

of sequences would give slightly di�erent numerical values. In any case, some conclusion

can be drawn from the table. The most important observation is that both the average

interface parameter values and the square sums of the even CCF values are approximately

equal for all well-known linear code families of equal period, even though the absolute

maximum values of the even CCFs (�c) di�er considerably. This can be seen for instance

when comparing the values of average interface parameter and the square sums of the even

CCF valulues with �c for codes of period 1023. The close average interface parameter val-

ues for di�erent families of same legnth implies that the SNR performance of asyncronous

DS/SSMA systems for those code families is approximately equal.

6 Conclusions

Traditionally in the spreading sequence analysis and design the role of the absolute max-

imum cross-correlation value has been in a major position. If one considers the average

SNR performance presented in section 5 one can argue that in fact a mean square-sum of

the cross-correlation function is a more accurate design parameter. Also the small perfor-

mace di�erences between the di�erent code families imply that the careful selection of the

spreading code is not very essential from the system performace viewpoint.

Of course, the average SNR performance is not the only nor the best design goal.

Although this kind of analysis is a standard approach in the analysis of the communication

systems, the simple channel model used and the use of SNR instead of the bit error

probability (BEP) impact the accuracy of the results. According to [K�ar96] this inaccuracy

should not a�ect the conclusions in a major way, and this seems to be feasible assumption.

One should also be aware that although the multiuser interference reduction is usually a

major design goal, there may be other requirements, such as the maximum code acquisition

time or the multipath fading performace that have impact on the code design.
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