
S-38.220
Licentiate Course on Signal Processing in

Communications,
FALL - 97

Suboptimal Multiuser Detectors (AWGN)

Jouko Lokio

Nokia Telecommunications
Radio Access Systems / New Radio Systems

P.O. Box 300, FIN-00045 Nokia Group

Email: jouko.lokio@ntc.nokia.com

Date: 20.11.1997



2

ABSTRACT .................................................................................................................. 3
1. INTRODUCTION ..................................................................................................... 3
2. SYSTEM MODEL AND CONVENTIONAL DETECTION................................... 3

2.1 System model....................................................................................................... 3
2.1.1 Synchronous channel .................................................................................... 3
2.1.2 Asynchronous channel.................................................................................. 4

2.2 Conventional detection ........................................................................................ 4
3. SUBOPTIMAL MULTIUSER DETECTION........................................................... 6

3.1 Linear detectors ................................................................................................... 6
3.1.1 Decorrelating detector .................................................................................. 6
3.1.2 Minimum mean-squared error (MMSE) detector......................................... 7

3.2 Subtractive interference cancellation................................................................... 7
3.2.1 Successive interference cancellation ............................................................ 8
3.2.2 Multistage parallel interference cancellation.............................................. 10
3.2.3 Zero-forcing decision-feedback (ZF-DF) detector ..................................... 13

4. SUMMARY AND CONCLUSIONS...................................................................... 14
4.1 Linear detectors ................................................................................................. 15
4.2 Subtractive interference cancellation detectors ................................................. 15
4.3 Conclusions ....................................................................................................... 16

REFERENCES............................................................................................................ 15



3

ABSTRACT

Direct-sequence code-division multiple access (DS-CDMA) is a popular wireless
technology. In DS-CDMA communications all of the users' signals overlap in time
and frequency and cause mutual interference. The conventional DS-CDMA detector
follows a single-user detection strategy in which each user is detected separately
without regard for the other users. A better strategy is multiuser detection, where
information about multiple users is used to improve detection of each individual user.
The aim of this paper is to introduce the most important suboptimal multiuser
detectors and their basic functionality.

1. INTRODUCTION

There has been great interest in improving DS-CDMA detection through the use of
multiuser detectors. In multiuser detection, code and timing (and possibly amplitude
and phase) information of multiple users are jointly used to better detect each
individual user. The important assumption is that the codes of the multiple users are
known to the receiver a priori.

The optimal multiuser detector (maximum likelihood sequence detector) is much too
complex for practical DS-CDMA systems so most of the research has focused on
finding suboptimal multiuser detector solutions which are more feasible to implement.

Most of the proposed detectors can be classified in one of two categories: linear
multiuser detectors and subtractive interference cancellation detectors. In linear
multiuser detection, a linear mapping is applied to the soft outputs of the conventional
detector to produce a new set of outputs, which hopefully provide better performance.
In subtractive interference cancellation detection, estimates of the interference are
generated and subtracted out. In this paper most important [according to 1] detectors
in each category are shortly presented. Naturally there are other proposed detectors, as
well as variations of each detector, that will not be covered here but interested reader
can find rather comprehensive reference lists from documents [1] and [2].

2. SYSTEM MODEL AND CONVENTIONAL DETECTION

2.1 System model

2.1.1 Synchronous channel

In a synchronous channel all bits of all users are aligned in time. To simplify the
discussion, we make the assumption that all carrier phases are equal to zero. This
enables use to use baseband notation while working only with real signals. To further
simplify matter, we also assume that each transmitted signal arrives at the receiver
over a single path (no multipath), and that the data modulation is binary phase-shift
keying (BPSK).

Assuming there are K direct-sequence users in a synchronous single-path BPSK real
channel, the baseband received signal can be expressed as



4

r t A t g t d t n tk k k
k

K

( ) ( ) ( ) ( ) ( )= +
=

∑
1

(1)

where Ak(t), gk(t) and dk(t) are the amplitude, signature code waveform and
modulation of the kth user, respectively, and n(t) is additive white Gaussian noise
(AWGN), with a twosided power spectral density of N0/2 W/Hz. The power of the kth

signal is equal to the square of its amplitude, which is assumed to be constant over a
bit interval. The modulation consists of rectangular pulses of duration Tb (bit interval),
which take on dk = ±1 values corresponding to the transmitted data. We assume a total
of N transmitted bits. The code waveform consists of rectangular pulses of duration Tc

(chip interval), which pseudorandomly take on ±1 values corresponding to some
binary pseudo-noise (PN) code sequence. [1]

2.1.2 Asynchronous channel

The detection problem in an asynchronous channel is more complicated than in a
synchronous channel. In a synchronous channel the bits of each user are aligned in
time so detection can focus on one bit interval independent of the others; the detection
of N bits of K users is equivalent to N separate "one shot" detection problems. In most
realistic applications, however, the channel is asynchronous and thus there is overlap
between bits of different intervals. Here, any decision made on a particular bit ideally
needs to take into account the decisions on the 2 overlapping bits of each user; the
decision on these overlapping bits must then further take into account decisions on
bits that overlap them and so on. Therefore, the detection problem must optimally be
framed over the whole message.

The continuous-time model expressed in equation (1) can easily be modified for
asynchronous channels by including the relative time delays between signals. The
received signal is now written as

r t A t g t d t n tk k k k k
k

K

( ) ( ) ( ) ( ) ( )= − − +
=

∑ τ τ
1

(2)

where τk is the delay for user k. [1]

2.2 Conventional detection

The conventional detector for the received signal is a bank of K matched filters (or
correlators), as shown in Figure 1. Here, each code waveform is regenerated and
filtered with the received signal in a separate detector branch. The matched filter
detector can be equivalently implemented using correlators. The outputs of the
matched filters are sampled at the bit times, which yields "soft" estimates of the
transmitted data. The final hard decisions are made according to the signs of the soft
estimates.

It is clear from Figure 1 that the conventional detector follows a single-user detector
strategy; each branch detects one user without regard to the existence of the other
users. Thus, there is no sharing of multiuser information or joint signal processing.
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Figure 1. The conventional multiuser detector for the BPSK-CDMA system.[7]

The success of this detector depends on the properties of the correlations between
codes. We require the autocorrelations to be much larger than the cross-correlations.
The correlation value is defined as

ρ i k
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The output of the kth user's correlator for a particular bit interval (synchronous
channel) is
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In other words, correlation with the kth user itself gives rise to the recovered data
term, correlation with all the other users gives rise to multiple access interference
(MAI), and correlation with the thermal noise yields the noise term zk. The existence
of MAI has a significant impact on capacity and performance of the conventional
direct-sequence system. As the number of interfering users increases, the amount of
MAI increases. Also in the case of a near-far problem we have significant amount of
MAI for weaker users.

In discussing multiuser detection, it is convenient to introduce a matrix-vector system
model to describe the output of the conventional detector (synchronous channel):



6

y = RAd + z (5)

For a K user system, the vectors d, z and y are K-vectors that hold the data, noise and
matched filter; the matrix A is a diagonal matrix containing the corresponding
received amplitudes; the matrix R is a K×K correlation matrix, whose entries contain
the values of the correlations between every pair of codes. Matrix R is symmetric
(ρi,k=ρk,i).

For asynchronous channel the discrete-time matrix-vector equation has the same form.
However, now the equation must encompass the entire message so the size of the
vectors and the order of the matrices are NK. In this paper an asynchronous channel is
assumed unless otherwise stated. [1]

3. SUBOPTIMAL MULTIUSER DETECTION

3.1 Linear detectors

In linear detectors computational complexity grows linearly with the number of users
while in optimum multiuser detector it grows exponentially [3]. Linear detectors apply
a linear mapping, L , to the soft output of the conventional detector to reduce the MAI
seen by each user. The two most popular of these, the decorrelating and minimum
mean-squared error detector are next presented.

3.1.1 Decorrelating detector

Output of the conventional detector y = RAd + z. For a K user system, the vectors d, z
and y, are K-vectors that hold the data, noise, and matched filter outputs of all K
users, respectively; the matrix A is a diagonal matrix containing the corresponding
received amplitudes; the matrix R is a KxK correlation matrix, whose entries contain
the values of the correlations between every pair of codes. [1, 3]

The decorrelating applies the inverse of the correlation matrix

L dec=R-1 (6)

to the conventional detector output in order to decouple the data (R can be assumed to
be invertible for asynchronous systems). The soft estimate of this detector is

�
d R y Ad R z Ad zdec dec= = + = +− −1 1 (7)

which is just the decoupled data plus a noise term. Thus, we see that the decorrelating
detector completely eliminates the MAI.

Most important properties: [1, 4]

• provides substantial performance/capacity gains over the conventional detector
under most conditions

• does not need to estimate the received amplitude
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• has a probability of error independent of the signal energies so it is resistant to the
near-far problem

• causes noise enhancement (zdec = R-1z > z) [5]

• the computation needed to invert the matrix R are difficult to perform in real life
even if suboptimal approaches for implementation is used

• for synchronous systems size of R is K×K but for asynchronous systems R is of
order NK, which is quite large for a typical message length, N

3.1.2  Minimum mean-squared error (MMSE) detector

The minimum mean-squared error (MMSE) detector is a linear detector which takes
into account the background noise and utilizes knowledge of the received signal

powers. This detector implements the linear mapping which minimizes [ ]E d Ly− 2
,

the mean-squared error between the actual data and the soft output of the conventional
detector. This results in

[ ]L R N AMMSE = + − −
( / )0

2 1
2 (8)

Thus the soft estimate of the MMSE detector is simply

�
d L yMMSE MMSE= (9)

As can be seen, the MMSE detector implements a partial or modified inverse of the
correlation matrix. Because the background noise is taken into account the MMSE
detector generally provides better probability of error performance than the
decorrelating detector. As the background noise goes to zero the MMSE detector
converges in performance to the decorrelating detector.

Important disadvantages of this detector are that it requires estimation of amplitude
and its performance depends on the powers of interfering users so it is not so robust
against near-far problem as the decorrelating detector. Also MMSE detector faces the
task of implementing matrix inversion. [1]

According [6] the complexity of the MMSE detector is 3K multiplications/bit, which
is linear in K and is independent of the transmission length M. However the detection
delay depends on M so when M is large, as it will always be in practice, the resulting
detection delay will be unacceptably large. One obvious possibility is to divide the
entire sequence of M blocks into subsequences but this degrades performance.

3.2 Subtractive interference cancellation

Another important group of detectors can be classified as subtractive interference
cancellation detectors (also called non-linear suboptimal multiuser detectors [5]). The
basic principal underlying these detectors is the creation at the receiver of separate
estimates of the MAI contributed by each user in order to subtract out some or all of
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the MAI seen by each user. Such detectors are often implemented with multiple stages
where the expectation is that the decision will improve at the output of successive
stages.

The bit decision used to estimate the MAI can be hard or soft. The soft-decision
approach uses soft data estimates for the joint estimation of the data and amplitudes,
and is easier to implement. The hard-decision approach feeds back a bit decision and
is nonlinear; it requires reliable estimates of the received amplitudes in order to
generate estimates of MAI.

Next several subtractive interference cancellation methods are presented. These
algorithms can be broken into three classes:

1. successive interference cancellers

2. multistage detectors (the multistage parallel interference cancellers and some of its
variations are handled here)

3. decision-feedback detectors (only the most famous one called zero-forcing
decision-feedback detector is presented)

However these three categories are not actually disjoint and particular realizations of
suboptimal detectors may use combinations of the three classes.

The last two classes of algorithms are decision-directed. They utilize previously made
decisions of other users to cancel interference present in the signal of the desired user.
These algorithms require estimation of channel parameters and coherent detection.
The algorithms in the first class can use soft decision rather than hard decisions to
remove MAI components. They lend themselves to noncoherent implementation. The
algorithms of the first and third classes employ interference cancellation which
requires ordering of users according to their powers. The signals of stronger users are
demodulated first and canceled from the signals of weaker users. This technique
provides an efficient and practical solution to the near/far problem. [5]

3.2.1 Successive interference cancellation

The successive interference cancellation (SIC) detector takes a serial approach to
canceling interference. In each stage this detector makes decisions, regenerates, and
cancels out one additional direct-sequence user from the received signal, so that the
remaining users see less MAI in the next stage.
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Figure 2.SIC detection - first stage (hard decision).[1]

A simplified diagram of the first stage of this detector is shown in Figure 2, where a
hard-decision approach is assumed. The first stage is preceded by an operator which
ranks the signals in descending order of received powers (not shown). The ranking can
be obtained by separate channel estimates or directly from the outputs of the
conventional detector. Normal assumption is that the rankings are based on the
conventional detector outputs which is naturally simpler from the implementation
point of view because no additional components are needed [12]. The first stage
implements the following steps:

1. Detect with the conventional detector the strongest signal, s1.

2. Make a hard data decision on s1.

3. Regenerate an estimate of the received signal for user one, � ( )s t1 , using

• data decision from step 2

• knowledge of its PN sequence

• estimates of its timing and amplitude

4. Cancel (subtract) � ( )s t1 from the total received signal, r(t), yielding a partially
cleaned version of the received signal, r(1)(t).

Assuming that the estimation of � ( )s t1 in step 3 above was accurate, the outputs of the
first stage are:

1. A data decision on the strongest user

2. A modified received signal without the MAI caused by the strongest user

This process can be repeated in a multistage structure: the kth stage takes as its input
the "partially cleaned" received signal output by the previous stage, r(k-1)(t), and
outputs one additional data decision (for signal sk) and a "cleaner" received signal,
r(k)(t).
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The reasons for canceling the signals in descending order of signal strength are
straightforward. First, it is easiest to achieve acquisition and demodulation on the
strongest users (best chance for a correct data decision). Second, the removal of the
strongest users gives the most benefit for the remaining users. The result of this
algorithm is that the strongest user will not benefit from any MAI reduction (however
it has the minimum MAI); the weakest users, however, will potentially see a huge
reduction in their MAI. [1, 5]

The SIC detector requires only a minimal amount of additional hardware and has the
potential to provide significant improvement over the conventional detector. It does,
however, pose a couple of implementation difficulties. First, one additional bit delay
is required per stage of cancellation. Thus, a trade-off must be made between the
number of users that are canceled and the amount of delay that can be tolerated.
Second, there is a need to reorder the signals whenever the profile changes. Here, too,
a trade-off must be made between the precision of the power ordering and the
acceptable processing complexity.

A potential problem with the SIC detector occurs if the initial data estimates are not
reliable. In this case, even if the timing, amplitude, and phase estimates are perfect, if
the bit estimate is wrong, the interfering effect of that bit on the signal-to-noise ratio is
quadrupled in power (the amplitude doubles, so the power quadruples). Thus, a
certain minimum performance level of the conventional detector is required for the
SIC detector to yield improvements; it is crucial that the data estimates of at least the
strong users that are canceled first be reliable. [1]

3.2.2 Multistage parallel interference cancellation

In contrast to the SIC detector, the parallel interference cancellation (PIC) detector
estimates and subtracts out all of the MAI for each user in parallel. The multistage
PIC structure presented here was introduced in [7].

The first stage of this detector is pictured in Figure 3., where a hard-decision approach

is assumed. The initial bit estimates, � ( )di 0 , are derived from the conventional
matched filter detector (not shown), which we refer to as stage 0 of this detector.
These bits are then scaled by the amplitude estimates and respread by the codes,
which produces a delayed estimate of the received signal for each user, � ( )s t Tk b− .
The partial summer sums up all but one input signal at each of the outputs, which
creates the complete MAI estimate for each user.
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Figure 3. One stage of a PIC detector (hard decision) for K users. The initial stage
(conventional detector) is not shown; it introduces one bit delay, which is why the
received signal and the amplitudes are delayed by Tb. [1]

Assuming perfect amplitude and delay estimation, the result after subtracting the MAI
estimate for user k is

r t T s t T

d t T A t T g t T n t T

d t T d t T A t T g t T

b i b
i k

K

k k b k k b k k b b
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( ) � ( )

( ) ( ) ( ) ( )

( ( ) � ( )) ( ) ( )

− − −
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≠

≠

∑

∑

τ τ τ

τ τ τ τ

(10)

As shown in Figure 3, the result of Equation (3) (for k=1...K) is passed on to a second
bank of matched filters to produce a new, hopefully better, set of data estimates.

This process can be repeated for multiple stages. Each stage takes as its input the data
estimates of the previous stage and produces a new set of estimates at its output. We
can use a matrix-vector formulation to compactly express the soft output of stage m+1
of the PIC detector for all N bits of all K users as

�
d m y QAd m Ad QA d d m z( ) �( ) ( �( ))+ = − = + − +1 (11)

The term QAd m�( )  represents an estimate of the MAI (R=I+Q). Perfect data
estimates, coupled with our assumption of perfect amplitude and delay estimation,
result in the complete elimination of MAI. Very simply example concerning the
performance of multistage PIC detector is presented in Figure 4.
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the conventional receiver and the two-stage PIC receiver and the single-user bit-error
probability. [7]

A number of variations on the PIC detector have been proposed for improved
performance:

• using the decorrelating detector as the first stage
The performance of the PIC detector depends heavily on the initial data estimates. As
was pointed out for the SIC detector, the subtraction of an interfering bit based on an
incorrect bit estimate causes a quadrupling in the interfering power for that bit. Thus,
too many incorrect initial data estimates may cause performance to degrade relative to
the conventional detector (no cancellation may be better than poor cancellation).
Therefore, using the decorrelating detector as the first stage significantly improves the
performance of the PIC detector (at the cost of increased complexity).

• using the already detected bits at the output of the current stage to improve
detection of the remaining bits in the same stage

Thus, the most up-to-date bit decisions available are always used. This contrasts with
the standard PIC detector, which only uses the previous stage's decisions.

• linearly combining the soft-decision outputs of different stages of the PIC detector
This simple modification yields very large gains in performance over the standard
soft-decision PIC detector. The reason for this has to do with the extensive noise
correlations that exists between outputs of different stages.

• using bias reduction
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Since the estimates of the interfering signals are correlated with the desired user's
power and bit value, a bias is produced when they are used to reconstruct and remove
the interference. One simple way to mitigate the effect of the bias and improve
performance of a multistage PIC is to multiply the channel gain estimates before
signal reconstruction by a partial-cancellation factor 0 ≤ CK

s( )  ≤ 1 that varies with the
stage s of cancellation and system loading K. [11]

3.2.3 Zero-forcing decision-feedback (ZF-DF) detector

The zero-forcing decision-feedback (ZF-DF) detector (also referred to as the
decorrelating DF detector [9, 10]) performs two operations: linear preprocessing
followed by a form of SIC detection. The linear operation partially decorrelates the
users (without enhancing the noise), and the SIC operation decisions and subtracts out
the interference from one additional user at a time, in descending order of signal
strength. [1]

The ZF-DF detector is based on a white noise channel model. A noise-whitening filter
is obtained by factoring R by the Cholesky decomposition, R=FTF, where F is a lower
triangular matrix. Applying (FT)-1 to the matched filter bank output of equation 2
yields the white noise model

y FAd zw w= + (12)

where the covariance matrix of the noise term, zw, is (N0/2)I (white noise).

In the white noise model the data bits are partially decorrelated. This can be shown to
arise from the fact that the matrix F is lower triangular. Thus, the output for bit one of
the first user contains no MAI; the output for bit one of the second user contains MAI
only from bit one of the first user, and is completely decorrelated from all other users;
similarly, the output for user k at bit interval i is completely decorrelated from users
k+1, k+2, ..., K, at time i, and from all bits at future time intervals. [1]

The ZF-DF detector uses SIC detection to exploit the partial decorrelation of the bits
in the white noise model. The soft output of bit one of the user, which is completely
free of MAI, is used to regenerate and cancel out the MAI it causes, thereby leaving
the soft output of bit one of the second user also free of MAI (decorrelated). This
process continues: for each iteration, the MAI contributed by one additional bit (the
previously decorrelated bit) is regenerated and canceled, thereby yielding on
additional decorrelated bit. [1]

A diagram of the ZF-DF detector is shown in figure 4, where we assume a
synchronous channel for clarity. In a synchronous channel we can deal with one bit
interval at a time so the size of the vectors and the order of F in equation 4 are reduced
to K. Assuming perfect estimates of F and the received amplitudes, the soft output for
the kth user is

�
d y F A dk w k k i i i

i

k

= −
=

−

∑, ,
�

0

1

(13)
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where [ ]�d sign di i=
�
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Figure 5. The ZF-DF detector. A form of SIC is performed on the whitened matched
filter output. [1, 9]

Under the assumption that all past decisions are correct, the ZF-DF detector eliminates
all MAI and maximizes the signal-to-noise ratio. An important difficulty with the ZF-
DF detector is the need to compute the Cholesky decomposition and the withening
filter (FT)-1 matrix inversion. The ZF-DF detector, like the other nonlinear detectors,
has the disadvantage of needing to estimate the received signal amplitudes.

Another decision-feedback detector which has been under more extensive study is
minimum mean-square-error equalization with decision-feedback. The structure of
this method is quite similar as in zero-forcing method so it is not presented here but
for interested reader this method has been presented at least in reference [8].
According that reference MMSE-DF detector seems to be slightly better than ZF-DF
in time-varying multipath channels.

4. SUMMARY AND CONCLUSIONS

Multipath access interference significantly limits the performance and capacity of
conventional DS-CDMA systems. Much research has been directed at mitigating this
problem through the design of multiuser detectors.
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In multiuser detection, code and timing information of multiple users is jointly used to
better detect each individual user. The optimum multiuser sequence is known, and
provides huge gains in performance and capacity over the conventional detector; it
also minimizes the need for power control. Unfortunately, it is too complex to
implement for practical DS-CDMA systems.

Many simpler suboptimal multiuser detectors have been proposed in the last few
years, all of which have the potential to provide substantial performance and capacity
gains over the conventional detector. Most of the detectors fall into two categories;
linear and subtractive interference cancellation.

4.1 Linear detectors

Linear multiuser detectors, decorrelating and minimum mean-squared error (MMSE)
detectors, apply a linear transformation to the outputs of the matched filter bank to
reduce the MAI seen by each user.

The decorrelating detector applies the inverse of the correlation matrix to the matched
filter bank outputs, thereby decoupling the signals. It has many desirable features,
including its ability to be implemented without knowledge of the received amplitudes.

The MMSE detector applies a modified inverse of the correlation matrix to the
matched filter bank outputs. It yields a better error rate performance than the
decorrelating detector, but it requires estimation of the received powers.

Both the decorrelating and the MMSE detectors require non-trivial computations that
are a function of the cross-correlation. This is particularly difficult for the case of long
codes, where the cross-correlations change each bit. Many proposals for simplifying
the necessary computations have been made, but difficulties remain.

4.2 Subtractive interference cancellation detectors

Subtractive interference cancellation detectors attempt to estimate and subtract off the
MAI. These detectors include the successive interference cancellation (SIC), the
multistage parallel interference cancellation (multistage PIC) and the zero-forcing
decision-feedback (ZF-DF) detectors.

The bit decisions used to estimate the MAI may be either hard decisions or soft
decisions. Soft decisions provide a joint estimate of data and amplitude and are easier
to implement. If reliable channel estimates are available, however, hard decision
(nonlinear) schemes perform better than their softdecision counterparts.

The SIC detector takes a serial approach to subtracting out the MAI: it decisions,
regenerates and cancels out one additional direct-sequence user at a time. In contrast,
the PIC detector estimates and subtracts out all of the MAI for each user in parallel.
Both of these detectors may be implemented with a variable number of stages.

A major disadvantage of nonlinear detectors is their dependence on reliable estimates
of the received amplitudes. It has been indicated that imperfect amplitude estimation
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may significantly reduce or even reverse the gains to be had from using these
detectors. Another significant disadvantage for the ZF-DF detector is that it requires
Cholesky factorization and matrix inversion. For SIC detector the main disadvantage
is that computation delay is increased linearly with the number of canceled users so it
is not alternative if considering rather large systems. So it seems that most promising
algorithm so far is the multistage PIC (and its variations) but it is also very demanding
from the implementation point of view.

4.3 Conclusions

Multiuser detection holds much promise for improving DS-CDMA performance and
capacity so some day in future it will be implemented into some commercial system.
However multiuser detection is still in the research stage and lot of studies at least in
real environments (we are not living in ideal or not even in rayleigh fading world, not
to mention non-idealities and implementation losses in receivers) has to be done until
we can be sure that multiuser detection is worth to implement into the receivers.
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