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Abstract

In code division multiple access system K uses share the same channel simultaneously. The sep-
aration of users is obtained with unique signature waveforms. The optimum multiuser detection
is derived in an additive white Gaussian noise channel both for synchronous and asynchronous
transmissions. Noticeable performance gains are obtained compared to the conventional single
user detection, but the computational complexity of the optimum detection is too complex to be
implemented for example in cellular systems. The demodulation of linear sub-optimal detectors,
such as the decorrelating detector, has only linear dependence per demodulated bit, but yet they
are able to reduce the multiple access interference quite well.

1 Introduction

The first and most important goal of this presentation is to understand the optimum multiuser
detection in CDMA communications. Some discussion is why the multiuser detectors are in general
so interesting and how much performance gain is obtained compared to the conventional single-
user detectors. Anyhow since in practice the computational complexities of the optimum multiuser
detection algorithms are too complex to be implemented, so called sub-optimal detectors have been
widely investigated. The second goal is to study the general linear multiuser detectors and compare
them to optimum multiuser and conventional single-user detectors. Two example detectors, the
decorrelating and the optimal linear detectors, are reviewed and analyzed.

In this paper first the motivation for multiuser detectors is presented in section 1.1, then the
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CDMA channel model used is introduced in section 2. The optimum multiuser detection for CDMA
signals is presented in section 3. Later the decorrelating detector and the optimum linear multiuser
detector are reviewed in section 4. Finally concluding remarks are presented is section 5.

1.1 Why multiuser detection?

The motivation to study the multiuser detectors rises from the weakness of the conventional single
user detector. The most essential disability is the lack to investigate the multiple access interference
(MAI) caused by other users in the same channel. This reduces the performance of the detector
especially when the signal energies are dissimilar, i.e., in the near-far-problem situation. Verdu
has shown in [5] that this limitations is not a inherent characteristic of CDMA systems, but just
a weak point of the conventional single-user detector.

The optimum multiuser detector outperforms the conventional single user detector at the ex-
pense of increase in the computational complexity. Theoretically the complexity of the detector
has an exponential dependency on both the number of users and the number of symbols transmit-
ted. With a dynamic programming implementation the exponential dependency on the number of
symbols transmitted can be reduced noticeably. Several algorithm have been proposed with vary-
ing complexities, for example a Viterbi type algorithm proposed in [5] for asynchronous Gaussian
channels is claimed to have only O(2K) computational complexity, where K is the number of users
in the same channel.

Besides the complexity problem the optimum detector has an other disadvantage, that is the
requirement of knowledge or estimates of received signal energies. The problem is even more
complex when it is kept in mind that the energies can vary during the time. For these two reason
a lot a effort has been put into the study of sub-optimal detectors. Examples of these kind of
detectors are two the linear receivers presented in section 4. Originally the decorrelating detector
and optimum linear detectors were proposed in [9] and [10], where they were stated to be near
far resistant with some signal constellation conditions.

2 System model

This section introduces the system model used throughout in this paper. The used notations are
mainly based on presentations is papers [5] and [6].

The symbol interval duration is assumed to be equal to T for all users. The set of transmitted
signals are marked with A and as general the antipodal set {−1, 1} is used unless separately
mentioned. A transmitted signal of the kth user in the ith time interval is marked with bk(i) and
total number of users in the channel is K, i.e., k = 1, . . . ,K. The observed time is divided to the
discrete time intervals t ∈ [iT, (i+ 1)T ] and 2M is called the used block size, which indicates the
number of transmitted bits or equivalently the number of discrete time interval.

All the transmitted signals, bk(i), are assumed to be equiprobable and independent. In sym-
bol synchronous transmission each user produces exactly one symbol which interferes with the
symbols of other users, see figure 1. Correspondingly in the asynchronous case, as illustrated
in figure 2, two symbols from each interferer overlaps the corresponding symbol of the desired
user. In symbol synchronous case he information vector received at the ith time-interval is
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Figure 1: Synchronously transmitted sequence

T

user # 1

user # 2

user # K

.

.

.

.

.

.

.

.

.

1

2

K 2K

K+1

K+2

2K+1

2K+2

3K

. . .
. . .

. . .

.

.

.

M-K

M-K+1

M

. . .
. . .

. . .

.

.

.

-M+1

-M+2

-M+K

Figure 2: Asynchronous transmission of sequences

b(i) = [bk(i), . . . , bK(i)]. The long information vector B includes all the bits from all the users,
i.e., B = [b1(−M), . . . , bK(−M), b1(−M + 1), . . . , bK(M)] = [b(−M), . . . ,b(M)]. The numbering
of bits is illustrated in figure 2. Using this notations simplies the discussion of detection in the
asynchronous transmission.

To obtain the optimum multiuser detector knowledge or estimates of some user specific pa-
rameters are required. While the conventional detector needs knowledge only of the signature
waveforms, sk(t) (=0, out size [0, T ]), the multiuser detector uses also the signal energies, E(t),
and in asynchronous case also the transmission delays, τk. It is also necessary to obtain the
matched filter outputs and cross correlations coefficients before the multiuser detector can be per-
formed. Generally also the signal delays dependent on the time, anyhow this is rarely considered
in publications. It is hereafter assumed that this sufficient statistics are available.

The general structure of a multiuser detector is illustrated in figure 3. It consists of a bank of
matched filters (one for each user) followed by a decision algorithm common to all users.

The received signal can be expressed with

r(t) = S(t,B) + n(t). (1)
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Figure 3: System model for multiuser detectors for asynchronous
multiple-access Gaussian channel

where the noise, n(t), is supposed to be additive white Gaussian noise (AWGN) with power spectral
density σ2. In the asynchronous case the

S(t,B) =
M∑

i=−M

K∑
k=1

√
Ek(t) bk(i)sk(t− iT − τk). (2)

is the element of L2 (i.e the Hilbert space of square integrable functions). For the sake of simplicity
and without loss of generality the users are numbered such that 0 ≤ τ1 ≤ . . . ≤ τK < T . In
synchronous case all the delays, τk, are zero and it is sufficient enough to study separately each
time interval i, for example i = 0, i.e., t ∈ [0, T ]. This one shot approach means that the outer
summation (over the time index i) in equation (2) can be dropped out.

When the received signal r(t) is cross-correlated separately with the signature waveform of one
user, for example k, the matched filter is achieved for that user. For the user k in time interval i
this yields now

yk(i) =
∫ τk+iT+T

τk+iT

sk(t− iT − τk)r(t)dt. (3)

The output of a bank of matched filters is marked with y. It is either a vector of size K × 1 or
2MK × 1 depending on the synchronization.

3 Optimum multiuser receiver

In this section the optimum CDMA multiuser decision rules for the channel introduced in previous
section is presented. The presentation is obtained from [1], [3], [5] and [8]. First some estimation
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theory is reviewed in section 3.1 and in section 3.2 the optimum detection in symbol-synchronous
channel is presented. It is a simple way to gain some appreciation of the general synchronous
channel case, which is later reviewed in section 3.3. Finally computational complexity is discussed
in section 3.4 and the performance of the detector is analyzed in section 3.5.

3.1 Estimation theory

Due to existence of several users there is no unique optimality criterion. As stated in [5] it is
possible to select the optimum sequence in two ways. First choice is to find the set of symbols that
maximize the joint a posteriori distribution P [B | {r(t), t ∈ <}]. Here < denotes the set of real
numbers. Second choice is to select the set that maximizes the marginal a posteriori distribution
P [bk(i) | {r(t), t ∈ <}], i = −M, . . . ,M ,k = 1, . . . ,K. This selection rule can is be called the
locally optimum or minimum-error-probability detection. The later is reviewed for example in [5]
for additive-light Poisson multiple-access channels.

Using the Bayes’ rule the a posteriori distribution can be written

P [B | {r(t), t ∈ <}] =
P [r(t) | B]P [B]∑
B P [r(t) | B]P [B]

. (4)

To obtain the maximum of the equation (4) some estimate of the a priori density, P [B], must be
established. If this information is not available the the maximum a posteriori estimate and the
maximum likelihood estimator are identical, see [3]. In CDMA multiuser detection this is the case
and therefore the studies can be changed to the maximum likelihood estimation.

It was assumed that all the transmitted sequences of symbols are assumed to be equiprobable,
and therefore the equation (4) can be simplified noticeably

P [B | {r(t), t ∈ <}] = P [{r(t), t ∈ <} | B]. (5)

To solve this we need to find sequence that maximizes

P [{r(t), t ∈ <} | B] = C exp(Λ(B)/2σ). (6)

Here C is a positive scalar independent of B and the Λ is called the log likelihood function. Since
exp is monotonically increasing function it is sufficient and also simpler to find the optimum of this
log likelihood function instead of the right hand side of equation (6). For synchronous transmission
this optimization is further studied in section 3.2 and for asynchronous case in section 3.3.

3.2 Synchronous Transmission

In the symbol-synchronous channels the symbol epochs of all users coincide at the receiver, see
figure 1. In practice this leaves many important classes of CDMA system out and therefore the
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asynchronous model is referred as a general model. Anyhow the study of symbol-synchronous
channels is necessary prerequisite for tackling the the asynchronous channel case and therefore it
is presented also here.

The log likelihood function used in equation (6) can in this synchronous case be obtained
separately for each time interval i, for example i = 0 when t ∈ [0, T ] without losing any information.
Thus it is

Λ(b) =
∫ T

0

[
r(t) −

K∑
k=1

√
Ek(0) bk(0)sk(t)

]2

dt (7)

In this one shot approach the signal energies are constants (and positive real numbers, as always )
during one time interval. To select the information vector b that minimizes the Λ(b) we need to
expand the given integral. This gives us

Λ(b) =
∫ T

0

r(t)2dt− 2
K∑
k=1

√
Ek(0) bk(0)

∫ T

0

r(t)sk(t)dt

+
K∑
j=1

K∑
k=1

√
Ej(0)

√
Ek(0) bj(0)bk(0)

∫ T

0

sj(t)sk(t)dt (8)

Even though this equation is quite complicate, it can be simplified noticeably. First the in-
tegral involving r(t)2 is common to all possible sequences b(0) and is therefore of no relevance
determinating which sequence was transmitted and may therefore be neglected. Next comparing
the term

yk(0) =
∫ T

0

r(t)sk(t)dt, 1 ≤ k ≤ K, (9)

to the equation (3), we see that it is just the matched filter output, yk, for the user k. The vector
of matched filter outputs of all users was denoted with y = {yk}. Finally, the integral

ρkj(0) =
∫ T

0

sj(t)sk(t)dt (10)

in the last term of equation (7) is just the cross-correlation of signature waveform of users k and
j. The cross-correlation matrix, denote with R, has the elements Rkj = {ρkj} and size K ×K.

The optimization problem of equation (7) can now be expressed as a maximization problem in
a correlation metrics

C(y,b) = 2
K∑
k=1

√
Ek(0) bk(0)yk −

K∑
j=1

K∑
k=1

√
Ej(0)

√
Ek(0) bk(0)bj(0)ρkj(0). (11)
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This has an equal presentation in a matrix from, which is more generally used in literacy. This is:

C(y,b) = 2(eb)ty − (eb)tR(eb)
= 2btey − bteReb.. (12)

Where e is diagonal signal energy matrix with elements ekk =
√
Ek and size K ×K. Quite often

the matrix e is attached either to the information vector b or to the cross-correlation matrix R.
In this case the eRe is denoted with H.

Finally the optimum multiuser detection can be formulated in symbol synchronous case as
follows

arg max
b∈{+1,−1}K

{
2yteb− bteReb

}
(13)

In synchronous case if all the users had orthogonal signals the cross correlation matrix R would
be diagonal and therefore the optimum demodulation could be achieved with a bank of matched
filters followed by thresholds, i.e., single user detectors. Generally it is not feasible to use orthogonal
signals due to the bandwidth limitations and the lack of symbol synchronism among the users. Also
the number of available orthogonal signals is restricted (depending on the code-length) and this
limits the number of users in a channel.

The task of finding the optimum solution, i.e., the vector b̂, that satisfies the equation (13)
depends exponentially on the number of users K, since there exist 2K different information vectors
b. So far nobody has managed to find a polynomial-time algorithm which can solve the optimum
multiuser detection even in symbol synchronous case. Problems of this kind of complexity are
called nondeterministic polynomial time hard (NP-hard).

3.3 Asynchronous Transmission

The derivation of the optimum solution in the asynchronous case can be done basically similar
to the synchronous case, see [1], but the one-shot approach used in symbol synchronous case is
no more feasible. As seen in figure 2, there are now exactly two consecutive symbols from each
interferer (= the users j 6= k) that overlap a desired symbol of user k. The observed time intervals
are now i = −M, . . . ,M , i.e., t ∈ [−MT,MT ]. Theoretically the optimum detection can be applied
only after all the signals have been transmitted. The truncation by setting the 2M finite may cause
some error to the estimate.

An other difference to the synchronous case is that now also the signal energies are time depen-
dent, i.e.,

√
Ek (t). The optimum maximum likelihood receiver computes now the log likelihood

function

Λ(b) =
∫ MT

−Mt

[
r(t)−

K∑
k=1

√
Ek(i) bk(i)sk(t− iT − τk)

]2

dt (14)
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=
∫ MT

−Mt

r(t)2dt− 2
K∑
k=1

√
Ek(i)

M∑
i=−M

bk(i)
∫ MT

−Mt

r(t)sk(t− iT − τk)dt

+
K∑
k=1

K∑
j=1

√
Ek(i)

√
Ej(i)

M∑
i=−M

M∑
m=−M

bk(i)bj(m)
∫ MT

−Mt

sk(t− iT − τk)sj(t− jT − τj)dt

The normalized cross-correlations can now be expressed with matrix of size K ×K

Rkj(m) =
∫ ∞
−∞

sk(t− τk)sj(t+mT + τk − τj)dt (15)

Then, since the modulating signature waveforms are zeros out size the interval [0, T ].

R(m) = 0, ∀ | m |> 1, (16)
R(−m) = Rt(m)

The R(1) is a upper triangular matrix with zero diagonal, because of the users were numbered
according to increasing delays. To make notations more compact lets define th 2MK ∗ 2MK
symmetric bloc-Toeplitz matrix R and the diagonal signal energy matrix E of same size

R =


R(0) R(1) 0 . . . . . . . . . 0
R(1) R(0) R(1) 0 . . . . . . 0

...
...

...
...

...
...

...
0 0 0 . . . R(1) R(0) R(1)
0 0 0 . . . 0 R(1) R(0)

 (17)

E = diag([
√
E 1(−M), . . . ,

√
E K(−M),

√
E 1(−M + 1), . . . ,

√
E K(M)])

= diag([e(−M), . . . , e(M)]) (18)

The matched filter output vector y is also of size 2MK × 1 and it can now expressed similar
to the synchronous case as

y = REB + n(t), (19)

Notice, that the noise vector, n(t), has been correlated and has now the autocorrelation matrix
which depends on the cross-correlations

E[nt(i)nt(m)] = σ2R(i−m). (20)
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Here the matrix R is as defined in equation (15), and is therefore non zero only when | i− j |≤ 1.

With these notations the optimum multiuser detection problem in asynchronous case can be
formulates as previously for the synchronous case with the equation ( 13),

arg max
B∈{+1,−1}2MK

{
2ytEB−BtEREB

}
(21)

If the direct approach is used to solve this problem, see [1], selecting the optimum sequences
B̂ (of size of 2MK × 1) from all the possible 22MK vectors implies computational complexity
exponentially dependent on both number of users K and the block size 2M . In practice this is
too complex to be implemented, especially when K and 2M are large. An efficient solution of this
combinatorial optimization problem is proposed in [5]. It employs a Viterbi type algorithm (see
[1] or [2]) which has exponential dependency only on the number of users.

According to Verdu [5] the key to the efficient maximization of Λ(B) lies in its sequential
dependence on the symbols bk(i). This allows to perform a summation of terms that are dependent
only on a few variables at a time. Suppose that a recurrent discrete-time system xi+1 = fi(xi, ui),
with some initial condition xi0 ; a transition-payoff function λi(xi, ui); and a bijection between
the set of transmitted sequences and a subset of control sequences ui, i = i0 . . . , if (i.e., B ↔
ui, i = i0 . . . , if) can be found such that

Λ(B) =
if∑
i=i0

λ(xi, ui). (22)

Equivalent to the maximization of Λ(B) is now a discrete-time deterministic control problem
finite input and state spaces and with additive cost. It can therefore be solved by the dynamic
programming algorithm either in backward or forward fashion. The optimum decisions cannot
be made until all states share a common sub-path, but fortunately a well known advantage of in
real-time applications of the forward dynamic programming algorithm (the Viterbi algorithm) is
that only a little degradation of the performance occurs when the algorithm uses adequately chosen
fixed finite decision delay.

Since there is not a unique way to define the additive decomposition of equation (22), several
different algorithms with varying complexities have been proposed. Verdu has obtained an algo-
rithm in [5] that has lower computational complexity than all the other proposals. He did it by
fully exploiting the the sequential dependency of the log likelihood function on the transmitted
symbols.

3.4 Computational Complexity of the optimum multiuser detector

The implementation of the optimum multiuser detector, or equally a maximum likelihood detector,
requires as stated knowledge several parameter values. First the signal waveform are know to
receiver and in practice the K-user coherent receiver is assumed to lock the signaling interval
and phase of each active user. Then it is possible to obtained internally the cross-correlation
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coefficients, defined by equation (15) as ρkj , by cross-correlating the the normalized waveforms
with the adequate delays and phases supplied by the synchronization system. Therefore the only
requirement beyond the synchronization imposed by the need for the partial cross correlations is
the availability of the received signal energies of each user k.

The time required to select the optimum sequence divided by the number of transmited bits as
M →∞ is called the time complexity per binary decision (TCB). The computational complexity
of the single-user detector and the optimum multiuser detector is noticeable different. For the
single-user detector TCB is independent of the number of users. It is assumed that all the users
employ binary modulation. For the synchronous optimum multiuser detection the complexity is
simply derived. To select the optimum sequence of size K × 1 from all the possible 2K possible
choices is a NP hard problem with computational complexity O(2K).

In asynchronous case the derivation of the computational complexity is more difficult task. The
direct approach is to select the optimum vector of size 2MK × 1 from all the possible sequences
22MK . It is possible to reduce the complexity by the choice of used algorithm. The algorithm
based on decomposition of equation (22) and defined in [5] is stated to have dimensionality of the
state space equal to 2K−1 and since each stage is connected to two states in the previous stage,
resulting in TCB = O(2K). The multiuser detector that minimizes the probability of error is
stated to have same structure, but instead of forward Viterbi algorithm it uses backward-forward
dynamic programming. The computational time complexity is also compared against the some
earlier defined decision algorithms and it is stated to be the lowest of all.

3.5 Performance of the optimum multiuser detector

The efficiency is defined as the ratio between the signal to noise (SNR) ratio required to achieve
the same uncoded bit error rate in the absence of interfering users and the actual SNR. The limit as
the background Gaussian noise level goes to zero (σ → 0), the asymtotic efficiency , characterizes
the performance loss when the bit errors are due to interfering users rather than to channel noise.
The asymptotic efficiency, ηk is a real number in the interval [0, 1] and if the the provability of bit
error, Pk, is nonzero in the absence of the background noise then ηk = 0. Correspondingly the
nonzero ηk implies that Pk → 0 as σ → 0.

The computation of asymtotic efficiency for asynchronous optimum multiuser detection is also
a NP-hard problem, while for the single user detector it is the quite simple to calculate. In [9] it
is given as:

ηck =
2

max

0, 1−
∑
j 6=k
| Rjk |

√
Ej√
Ek

 (23)

The kth user detector is near far resistant only when all the cross-correlations Rjk = 0, ∀j 6= k.
Otherwise the the greatest lowest bound (infimum) of asymptotic efficiency is 0.

In the optimum multiuser detection the kth user error probability is asymptotically equivalent
to that of a binary test between the two closest hypotheses that differ in the kth bit. It can be
therefore formulated as follows:
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ηk =
1√
Ek

min
ε∈{−1,1}Kand εk=1

εtHε (24)

where the ε is the error sequence which corresponds to the difference between b and the the
sequence selected by the detector. The channel matrix was in synchronous case H = eRe. In the
two user symbol synchronous case this asymptotic efficiency is

ηk = min

{
1, 1 +

Ek
Ej
− 2 | ρ12 |

√
Ek√
Ej

}
, (25)

where {k, j} ∈ {{1, 2}, {, 2, 1}}. In [9] figure 3 illustrates the differences in asymptotic efficiency in
a two user case for single user, optimum multiuser and decorrelating detector.

Even thought no explicit form of asymptotic efficiency can be obtained to general case a closed
form is studied in [9] for the synchronous case. Optimum detection outperforms the conventional
single-user detector with this measurement noticeable.

In [5] it is shown that the minimum multiuser error probability is equivalent in the low noise
region to that of single user detection with reduced power. Several numerical examples of the
performance gain obtained with respect to bit error probability of the optimum multiuser detection
have been given in various articles.

4 Linear detectors

It is known that no detector, linear or nonlinear, can outperform the optimum detector with respect
to near-far resistance, but the complexity of the optimum detector has been a good motivation
to intensive study of various sub-optimal solutions. The goal is to achieve the performance of the
optimum receiver with less computational complexity.

In this section first the general idea of linear detectors is derived. Then the decorrelating
detector is presented and finally the optimum linear detector is review. More details about the
these detectors can be found in [9] and [10].

As define in [10] a linear detector for a bit i of user k is characterized by a vector νk,i ∈ L,
where L is the vector space with elements of size 2MK × 1. Each vector consists of real numbers,
i.e., νk,ij (m) ∈ <, for further study about the linear spaces see [4]. The numbering of the elements
is performed similarly to the numbering of the long information vector B, The unit vector uk,i ∈ L
has components uk,ij (m) = δkjδmi, where δ is the Kronecker delta function. Note that k and j
refer to user and i and m to the time intervals.

The purpose is to maximize the asymtotic efficiency , ηk, (or equally minimize the probability
of bit error, Pk, in the low-noise region). This was defined in section 3.5 as the performance
characteristics that indicates the loss due to the existence of other users in the channel. In the
symbol synchronous case this efficiency for linear detectors was defined in [9] as
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ηk(Q) =
2

max

{
0,

1√
Ek

(QH)kk −
∑
j 6=k | (QH)kj |√

(QHQt)kk

}
(26)

where H was the channel matrix, eRe and Q the linear detector matrix with rows νk,i (of size
1×K ).

In [9] it was shown that the generalized inverse detectors achieves the same degree of near far
resistance as the optimum detector.

The optimization task can be formulated in the general asynchronous case as follows: which
linear mapping Q : <2MK → <2MK maximizes the asymtotic efficiency of the decision scheme

B̂ = sgn(Qy) = sgn(QREB + Qn), (27)

The matrix Q, the linear detector matrix of size 2MK × 2MK has row vectors νk,i.

4.1 The Decorrelating Detector

The decorrelating detector reviewed in this section is a solution to the generalized likelihood ratio
test or maximum likelihood detector when the signal energies are not known at the receiver. It is
a linear multiuser detector which recovers the transmitted bits without multiuser interference in
the hypothetical case of no background noise. Yet the decorrelating detector is not very close to
optimum especially if the signal energies are different.

Again it is easier to consider the synchronous case to understand the nature of the decorrelating
detector. The linear memoryless transformation of the decorrelating detector is performed by a
generalized inverse of the signature cross-correlation matrix R. Recall the matched filter equation
(19)

y = Reb + n (28)

in which the noise has auto covariance matrix R.

To illustrate the decorrelating detector we draw the decision regions in the two user case. In
the domain R−1/2y where the noise (of the matched filter) is spherically symmetric and Gaussian
the decision regions are given by perpendicular bisections of the segments between the different
hypotheses denoted with A,B,C and D. In three (or more) dimensional case the decision region
are cones with vertices at origin. The mapping with the decorrelating detector matrix transforms
the matched filter output to one quadrants. The final selection is performed then with the sgn
function.

Since no knowledge or estimate of the signal energies is available, except that they are positive,
the best linear solution can be achieved with simple matrix calculation. The problem size is
K× 1 = (K×K) ∗ (K×K) ∗ (K× 1) and can be solved for eb assuming that the cross-correlation
matrix R is invertible. This is true if only if the signature waveforms are linearly independent of
each other. The decorrelating detector is defined as follows:
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Figure 4: Hypotheses and decision quadrants in two user case for decor-
relating detector.

b̂ = sgn(R−1y). (29)

To verify that the detector really eliminates the multiuser interference lets write the previous
equation with an unrealistic assumption that no noise is present in the channel

sgn(R−1y) = sgn(R−1Reb) = sgn(eb). (30)

This is an unbiased estimate of b. It means that the decorrealating detector is invariant for each
bit, bk(i), with respect to received energies. The name decorrelating originates from this important
property of the detector.

Notice that also the bit error rates Pk are independent of energies of interfering users and the
asymptotic efficiency ηk, defined in equation (26) does not depend on any signal energies.

In the asynchronous case for the finite block size 2M the decorrelating detector, qk,i, is a linear
detector for which

Rqk,i = uk,i. (31)

The existence of the solution is proven in [10]. And the synchronous case, equation (29) is just
a simplified form of this equation.

4.1.1 Performance and Complexity

The decorrelating detector offers substantial improvement in asymptotic efficiency compared to
conventional single-user detection and has the same near-far resistance as the optimum detector
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with some limitations on signal energies and cross-correlations. It has been described and analyzed
in various articles, from which one of the earliest is [9]. Later it was generalized for asynchronous
channels in [10].

The decorrelating detector has linear complexity in the number of users, since it is obtained by
performing a linear transformation of the matched filter output. An efficient method for obtaining
the decorrelating detector is the the square-root factorization method described in appendix of [1].
The main disadvantage of the detector is computation required to calculate the decorrelating
coefficients, i.e., inverting the cross-correlation matrix.

4.2 The optimum linear receiver

For simplicity lets consider the symbol synchronous case of equation (27) which defined the general
linear multiuser detection problem. To estimate one user one bit the equation is as follows:

b̂k(i) = sgn(νk,iy) = sgn(νk,iReb + νk(i)n), (32)

where the νk,i denotes the linear detector for user k in the i time interval, which now is of size
K × 1. This optimization problem can be interpreted in terms of decision regions. We need to
find the optimum partition of the K-dimensional hypotheses space into K decision cones with
vertices at the origin. The surfaces of these cones determine the column of the inverse Q−1, which
is the linear mapping we are trying to find. If the Q is applied to the cone configuration cones
are mapped to quadrants. In the two user decorrelating detector case the decision regions are seen
in figure 4. In general linear detector case the hypotheses (A, B, C, D) The final output of the
detector is obtained by evaluating the sgn of each dimension.

The user kth user optimal linear transformation Qk(y) = (νk,i)ty can formulated as follows:

(νk,i)t = [1; sgnρ12 min{1, | ρ12(
√
E k√
E j

)}] (33)

=

{
[1;−sgnρ12], if

√
E k√
E j
≤| ρ12 |

btk, otherwise
(34)

Here either k = 1 and j = 2 or vice versa. The lower equation implies the decorrelating detector.

In the range
√
Ej√
Ek

< ρ the asymptotic efficiency of the two user case equals to one defined for
optimum detector in equation (25). Otherwise the optimum linear detector for user k is equal to
the decorrelating detector, since btk is just the kth row of decorrelating detector.

Determination of the K user case of the optimum linear detector leads to a situation were
we have G ( 0 ≤ G ≤ K) equations with G unknown parameters. An algorithm proposed for
synchronous case in [9], but it hasn’t been studied in great deals in literature. The decorrelating
detector is far more known and analyzed and this optimum linear detector.
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5 Conclusion

This paper has reviewed the optimum multiuser detection in CDMA systems. The motivation to
study multiuser detectors was based on the weaknesses of the conventional single user detector.
The main problem of the conventional detection is the lack of competence to recover reliably the
symbols of the weak users even in situation with low cross-correlations of the signature waveforms.

The optimum detection outperforms the conventional detector in performance clearly, since
it is able to subtract the multiple access interference (MAI) for each user. In the same time
the complexity of the algorithm is considerable changed. With careful design of the receiver
algorithm the time complexity per bit (TCB) can be reduced from O(22MK) to O(2K) in the
binary modulation, where K is the number of users. Especially in the situations were users have
very different signal energies or strong cross-correlations the difference in performance is noticeable.
In the absence of noise the optimum multiuser detector can remove the interference of other users
what ever the signal energies are, if the signature waveforms are not linearly dependent. This
feature is called near far resistance.

The sub-optimal detectors which have computational complexity only linearly dependent on
the number of users K are called the linear multiuser detectors. They have shown to be able to
achieve performance gains over the conventional receiver and with some limiting conditions on
signals constellations are near far resistant, i.e., when the background noise level is reduced the bit
error rate goes to zero. They can exploit the structure of the multiple access interference caused
by other users in the channel.

References

[1] John G. Proakis: ”Digital Communications”, McGraw-Hill, Third edition, New York 1995.

[2] Andrew J. Viterbi: ”CDMA, Principles of Spread Spectrum Communications”, Addison-
Wesley, 1995.

[3] Harold W. Sorenson: ”Parameter estimation”, Marcel Dekker, Inc., New York 1980.

[4] David G. Luenberger: ”Optimization by Vector Space Methods”, John Wiley & Sons, Inc.,
1969.

[5] Sergio Verdu: ”Minimum Probability of Error for Asynchronous Gaussian Multiple-Access
Channels ”, IEEE Transactions on Information theory, Vol. IT-32, No. 1, pp. 85-96, January
1986.

[6] Sergio Verdu: ”Multiple-Access Channels with Point-Process Observations: Optimum Demu-
lation”, IEEE Transactions on Information theory, Vol. IT-32, No. 5, pp. 642-651, September
1986.

[7] Sergio Verdu: ”Optimum Multiuser Asymtotic Efficiency”, IEEE Transactions on Communi-
cations, Vol. COM-34, No. 9, pp. 890-897, September 1986.

[8] Sergio Verdu: ”Computational Complexity of Optimum Multiuser Detection”, Algorithmica,
Vol. 4, No. 3, pp. 303-312, 1989.

16



[9] Ruxandra Lupas and Sergio Verdu: ”Linear Multiuser Detectors for Synchronous Code-
Division Multiple-Access Channels”, IEEE Transactions on Information Theory, Vol. 35, No.
1, pp. 123-136, January 1989.

[10] Ruxandra Lupas and Sergio Verdu: ”Near-Far Resistance of Multiuser Detectors in Asyn-
chronous Channels”, IEEE Transactions on Communications, Vol. 38, No. 4, pp. 496-508,
April 1990.

17


