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Abstract

This report deals with adaptive multiuser detection in a DS-CDMA multiple-antenna
mobile receiver. In the mobile reception, we are only interested in detecting one user
as compared with the base station reception where detection several users is
desirable. Furthermore, in the link base station to mobile station, the interference
propagates over the same channel as the desired signal.

In this report, the problem of detecting one user in the presence of multiple access
interference is solved by applying two linear receiver structures equipped with
multiple antennas. The first one is the minimum mean-squared error (MMSE) receiver
and the second is the anchored mean-output energy (MOE) receiver.

Adaptive implementations of the receivers is also considered. The results show that
the multiple-antenna receivers are insensitive to the interfering powers and can
provide room for more users or a smaller number of antennas than the matched filter
solution. Using the adaptive algorithms, the performance even with a single antenna
is often much better than a matched filter with 4 antennas.
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Introduction

In the never ending search for solutions that can increase the capacity in a mobile
communication system,  multiuser detection schemes for CDMA system has grown to
be a promising candidate for a future system. In multiuser detection, joint
demodulation of all users in the system is performed as compared to single-user
detection where only one user of interest is demodulated. However, many multiuser
detectors can be used as single-user detectors after some slight modifications.

For a mobile communication system, there exist two channels. The first is when a
base station transmits to the mobiles and is referred to as the downlink channel. The
second, the uplink channel, is where the mobile transmits to the base station.
Figure 1.1, illustrates these two channels.

The signal reception at the mobile unit differs essentially from that of the base station
reception. First, the transmission is usually assumed to be synchronized so that all the
symbol periods overlap exactly. Second, the signal processing should be as simple as
possible due to the strict constraints for price, complexity, power consumption, and
physical size of the mobile receiver. Hence, optimal or suboptimal multiuser receivers
are more suitable for implementation at the base station (uplink reception).

For improving the signal reception at the mobile, receivers that utilize the knowledge
of only the desired user’s code waveform has been studied. These receivers try to
optimize the performance in a multiuser environment by introducing an adaptive
element to deal with the interference. Therefore, they are often referred to as adaptive
multiuser receivers.

Figure 0.1: Illustration of the uplink and the downlink channels
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Another known strategy to improve the overall performance is to use multiple
antennas at the receiver. In the downlink transmission the desired signal and all the
interference from within one coverage region come from the same direction and
through the same channel. For utilization of multiple antennas at the mobile unit this
means that the concept of beamforming (suppression of users with different spatial
location) is not necessary as most of the interference comes from exactly the same
direction as the desired signal. Furthermore, beamforming will not be easily
implemented, as it is difficult to attach many antenna elements at the receiver. A
mobile phone handset can hardly bear more than two antennas; on the top of a car roof
or a laptop computer one can probably put at most five elements. Hence, multiple
antennas at the mobile receiver are more useful for providing diversity against
additive noise and fading.

The topic of this report is to investigate the mobile reception (single-user detection) in
a CDMA system when the receiver utilizes more than one antenna.

Organization of the report

In Section 2, the signal model for the multiple-antenna mobile receiver in a downlink
DS-CDMA system is constructed. In Section 3, the optimal maximum likelihood
receiver for multiple antennas is derived together with two linear receiver structures.
Section 4, present the adaptive implementations of the linear receivers in Section 3
together with some simulations. Finally, we draw some conclusions in Section 5.
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Signal Model

In this section the signal model for a synchronous DS-CDMA downlink transmission
is constructed. The signal model follows the presentation in [1]. The system under
consideration consists of K users transmitting information with binary antipodal
signals with bit duration Tb .

The continuously transmitted signal is formed by:

x t A b m s t mT tk k k b c
k

K

m

( ) ( ) ( ) cos( )= − +
=

∑∑ 2
1

ω φ (1.1)

where for the kth user, { }b mk ( ) ∈ -1,  1  is the mth bit, Ak is the relative amplitude due
to power control, sk(t) is signature sequence (code), ωc  is the carrier frequency and φ
is the carrier phase.

The code sequence has the form:

s t s p t jTk k
j

c
j

G

( ) ( )( )= −
=

∑
1

(1.2)

where G T Tb c=  is the number of chips per bit, { }sk
j( ) ∈ -1,  1 , and p(t) is the chip

waveform. The chip waveform is here assumed to be a rectangular pulse with unit

energy and duration Tb , i.e., s tk ( ) = 0 for [ ]t Tb∉ 0, .

As stated before, in downlink transmission, signals associated with a number of
simultaneously active users within one cell, are transmitted over the same channel. A
mobile receiver, equipped with N antennas will receive the transmitted signal over N
different channels. In the case of an AWGN channel the received signal at antenna
number i can be written as

r t A x t e n t i Ni k k i
j ct c i

k

K

i( ) ( ) ( ) ..( )= ℜ −








+ =+ −

=
∑ 2 1

1

τ ω φ ω τ (1.3)

where τi is the propagation delay of the incoming signal at antenna number i, and ni(t)
represents the AWGN with two sided spectral density N0/2 [W/Hz] at antenna number
i . The noise at one antenna element is assumed to be independent from those at the
others.

It is worth noting that in a more general case (for example, uplink transmission), the
phases and the delays of the different users are usually not the same. In front of every
antenna is an I-Q stage [2] followed by a chip-matched filter (integrate and dump filter
with integration time Tc). A complex representation of the received signal sequence is
formed by adding the in-phase to the quadrature component, r i(l) = riI(l) + jr iQ(l). The
received complex sequence can now be written as:
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The noise ni(l) is a white sequence with variance [3]: σi
2 = E{| ni(l)|

2}. If the samples
from the received sequence during the mth bit interval are collected in the vectors

[ ]ri i i im r mG r mG r mG G C( ) ( ) ( ) ( )= + + + ∈1 2 �
T

(1.6)

[ ]ni i i im n mG n mG n mG G( ) ( ) ( ) ( )= + + +1 2 �
T

(1.7)

we can write the received discrete-time signal as:

r S A b ni i i im m m( ) ( ) ( )= + (1.8)

where Si  is the G K×  spreading matrix containing the spreading sequences for the

different users

[ ]S s s si i i k i= 1 2� , (1.9)

and sk i,  is the time-discretized delayed version of the kth user’s sampled code

sequence at antenna i, A i is a diagonal amplitude matrix of the form:
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(1.10)

where a ei
j c i= −( )φ ω τ is the complex phase factor at the ith antenna. Finally, b( )m  is a

vector containing the transmitted bits of the users:

[ ]b( ) ( ) ( ) ( )m b m b m b mK= 1 2 �
T

(1.11)

The noise sequence is independent between the antennas so that:

{ }E m m i ji j i Gn n I( ) ( ) ( )H 2= −σ δ (1.12)

It can be seen from  (2.5) that, if the antennas are spaced close together, the sampled
code sequences will be the same in all antennas. In the case of an N-element linear
array, the difference in propagation delay between the antennas can be found by
simple geometry to be [4]

τ θi i
c

= −( ) sin1
∆

(1.13)
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where ∆  is the element spacing, c is the speed of light and θ  is the direction of the
incoming signal with respect to the array normal. Using the relation λ ω πc c c= 2
where λc  is the wavelength of the carrier, we can write the phase factor for the linear

array as

a j ii
c

= − −
















exp ( ) sinφ π

λ
θ2 1

∆ (1.14)

In next section, we consider the problem of combining the incoming signals. The
optimal maximum likelihood detector and two linear detectors suitable for adaptive
implementation are studied.
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Receiver structures

The conventional CDMA receiver is simple but ignores the presence of multiple
access interference (MAI). Its complexity is independent of the number of users.
However, it is only optimal in the case of an AWGN channel, one single user or
orthogonal codes. The optimum detector was derived and analyzed in [5]. In [6] a
linear detector referred to as the decorrelating detector was derived. One drawback of
the optimal receiver and most of the proposed multiuser receivers is that they require
knowledge of the transmitting waveforms of all the users in the systems. Furthermore,
this information will also be dynamic and it may not be practical for the base station to
continually transmit such information to the mobile unit. Hence, in the mobile station
there is need for other detectors that do not require this information.

In Section 3.1, the maximum likelihood detector for the case of multiple antennas is
derived and the matched filter solution for multiple antennas is stated. In Section 3.2,
two multiple-antenna receivers suitable for adaptive implementation are introduced.

Maximum likelihood receiver

The maximum likelihood (ML) detector is optimal in the sense that it maximizes the
posterior distribution of the received data. In other terms, the detector chooses the
most likely transmitted sequence b given that r  was received. The optimum detector in
the case of one antenna derived in [5], was shown to have exponential complexity in
the number of users. Here, we derive the ML detector for the case of multiple
antennas.

Collect the signals r i from the N antennas in the vector

[ ]r r r r= 1 2
T T T T

... N (2.1)

Under the assumption that the noise at one antenna is independent from those at other
antennas, we can from the joint density function for r  obtain the decision rule as [1]

�

�

�
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d

b

b A S C r b A S C S A b
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d

b
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− −∑ ∑2 1 1H H H H H H
i i i i

i
i i i i i

i

(2.2)

where [ ]A A A A= 1 2� N  contains the amplitude matrices at each antenna,

[ ]d = d d dN1 2�  contain the sampled delay vectors at every antenna, b is the

transmitted bit vector, and Ci is the noise covariance matrix. Assuming that the
amplitudes and delays in every antenna are known (or good estimates exists), the
transmitted bit vector can be estimated from the expression
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Let us now simplify  (3.3) by introducing the vector y and the matrix H as

y A S C r=
=
∑ i i i i
i

N
H H -1

1

(2.4)

H A S C S A=
=
∑ i i i i i
i

N
H H -1

1

(2.5)

Now,  (3.3) can be written as:

{ }
( ){ }� arg max

,
b b y b Hb

b
= ℜ −

∈ −1 1
2

K

H H
(2.6)

The decision rule in (3.6) has the same form as the multiuser decision rule for one
antenna [5], [6]. The dimensions of the involved vectors and matrices in  (3.3) are the
same as for the case of a single antenna. Therefore, computational complexity is
similar. The extra computational cost comes from combining the output signals from
every antenna in (3.4) and (3.5). However, this additional cost is small compared to
the overall complexity.

Equation (3.3) tells us that it is not necessary to forms put nulls in the direction of
interfering users (as in the traditional adaptive beamforming), instead we should
direct our antenna lobe toward our signal of interest and then perform multiuser
detection. That is an important observation when studying the multiple-antenna case at
both the mobile and the base station. When we take an sub-optimal approach in order
to reduce the complexity of the receiver, we can use all the in the literature available
receivers as long as we direct the antenna lobe towards the signal of interest!

Linear multiple-antenna receivers

In this section, two linear single-user multi-antenna receivers suitable for adaptive
implementation are derived. Most of the receivers suitable for adaptive
implementation are based on minimizing the mean-squared error (MSE) between the
received signal and transmitted signal at the output of the receiver and a known
transmitted signal [7,8]. The idea is simple and elegant but its adaptive
implementation requires the need of training signals. In a mobile channel the
environment can change rapidly causing the receiver to loose track of the filter
coefficients, which requires that the training sequence has to be re-transmitted. This
problem was considered in [9] where a slightly different minimization criterion was
used, the anchored mean-output energy (MOE). This detector sidesteps the need of
training signals and is therefore referred to as blind. Here, we study the multiple-
antenna versions of both these approaches.

The structure of the both the receivers equipped with N antennas is shown in Fig. 3.1.
Each of the N antenna branches contains a linear filter whose coefficients are to be
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optimized. The filtered signals from each antenna are then added together to form a
decision variable. In Fig. 3.1, r i denotes the received signal after chip-matched
filtering at antenna i, hi contains the complex filter coefficients for the ith antenna, and
z is the decision variable formed by adding the filtered outputs from each antenna.

In order to get a compact notation, let us collect the filter coefficients and the received
sequences from the antennas in vectors as

[ ]h h h= 1
T T T
� N (2.7)

[ ]r r r r= 1 2
T T T T

� N (2.8)

Using the above notation, the output (the decision variable) from the receiver can be
written as

z = h rH

(2.9)

In the next sections we derive the multiple-antenna versions of the MMSE receiver
and the MOE receiver.

The minimum mean-squared error (MMSE) receiver

The receiver coefficients for the MMSE detector, is obtained by minimizing the mean-
squared error

{ }� arg minh h r
h

= −E bH
1

2

(2.10)

and the solution is given by the well-known Wiener-Hopf equation [10]

h R popt = −1 . (2.11)

ΣΣ

h1
r1

h2
r2

hN
rN

�

z

Figure 2.1: Structure of linear detector



12

In  (3.11) { }R rr= E H  is the input signal autocorrelation matrix, and { }p r= E b1
*  is

the crosscorrelation vector between the transmitted data and the received signal
vector. The inverse of the correlation matrix exists under the assumption that noise
covariance matrix is positive definite which is usually the case. While, the steps from
(3.11) to  (3.12) is rather straightforward, it is not very illustrative for our case, so let
us instead rewrite our signal model in a more general form.

By introducing the vectors pk

[ ]p s s sk k k k N k NA a a a= 1 1 2 2, , ,
T T T

� (2.12)

where, as before, sk,i is the kth users sampled code sequence at the ith, ai is ith
antennas complex phase. We can express the received signal as

r p n= +
=

∑bk
k

K

k
1

(2.13)

Inserting  (3.9) into the MSE function we get

{ }MSE E b k k
k

K

= − = − + +








=
∑h r h p h p p hH H H H

1

2

1

2

2

1 Γ (2.14)

where Γ is the noise covariance matrix at the antennas given by

Γ =



















σ

σ

1
2

2

I 0 0

0

0

0 0 I

G

N G

�

� �

� �

�

(2.15)

where IG is the G by G identity matrix.

Using this notation it can easily be shown that the optimum solution is given by

[ ]h p B p B popt = + − − −1 1
1

1

1 1
1

H
(2.16)

where B p p= +
=

∑ k k
k

K
H Γ

2

. The MMSE is obtained by substituting (3.16) into (3.14)

[ ]MMSE= + − −
1 1

1
1

1
p B pH

(2.17)

Another performance criterion of interest, is the average signal-to-interference plus
noise ratio (SIR) at the output of the receiver. The SIR is formed by taking the ratio of
the filtered desired signal to the filtered interference and noise.

It can be shown that the MMSE solution in (3.16) also maximizes SIR [7] denoted
here by MSIR. The maximum SIR is given by

MSIR MMSE= −−1 1 (2.18)
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210.1 Some numerical results

In this section, we show the optimal performance of the MMSE multiple-antenna
receiver. The performance of the receiver is compared with the matched filter solution
for multiple antennas [1]. The spreading sequences are Gold codes of length 15

The matched-filter solution maximizes the output SNR in a single-user system, and
therefore it neglects the presence of other users. Therefore, the performance will be
worse when introducing more than one user in the system. Moreover, if the multiple
access interference (MAI) dominates over the noise, adding more antennas will only
increase slightly the output SIR. The MMSE receiver is optimized so that it considers
both noise and MAI. Therefore, for a high noise level and low MAI, it tries to average
the noise away and if the MAI dominates, the MMSE receiver concentrates to
suppress that instead of the noise. In order to illustrate the behavior described above
we plot the output SIR for different levels of MAI to see the performance of the
matched filter and the MMSE receiver.

In Fig. 3.2, the SIR as a function of the number of users is shown. The signal-to-noise
ratio at the antennas for the desired user in the absence of multiple access interference
is fixed to10 dB. The base station transmits with same power to all the users, here set
to unity, i.e., Ak=A1=1. The number of antennas used is one, two, and four.

Figure 3.2 clearly shows the degradation of the performance of the matched filter
solution as the MAI increases. The performance of the MMSE receiver is however
unaffected and gives a 3 dB improvement when doubling the number of antennas.
Figure 3.2 illustrates the fact that, when the MAI is the dominating interference, the
increase in the output SIR for the matched filter is small when adding more antennas.
If we compare the matched filter with the MMSE receiver in Fig. 3.2, we can observe
some interesting effects. The number of users allowed for a fixed SIR antennas is

MMSE

Figure 2.2: SIR as a function of the number of users for the matched filter (dashed curves) and the
MMSE (solid curves), SNR1,i=10 dB, Ak=A1=1. The number of antennas is one, two and four
(N=1,2,4).

N=4

N=2

N=1
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considerably higher for the MMSE receiver than for the matched filter solution. Also,
the same number of users might be served with a smaller number of antennas with the
MMSE receiver (two antennas instead of four).

Let us take a look at how sensitive the receivers are to changes in interfering power,
we let the powers of the interfering users change with respect to the desired user’s
power. Figure 3.3 shows the optimal SIR as a function of relative interference power
in a system with 10 users. The signal-to-noise ratio at the antennas for the desired user
is fixed to 10 dB.

As can be seen from Fig. 3.3, the MMSE receiver is not sensitive to the relative
powers of the interfering users and is able to suppress the strong interfering signals.
However, the performance of the matched filter deteriorates drastically for increasing
interfering power.

The anchored mean-output energy (MOE) receiver

An adaptive receiver that needs training sequences (like the MMSE receiver) can
easily lose track of the filter coefficients if the environment changes rapidly. If this
happens, the transmission have to be interrupted and a new training sequence has to be
sent to retain the proper filter coefficients. It was shown in [9] that using a slightly
different optimization criterion, the anchored mean-output energy (MOE), the need
for training sequences vanish.

Here we take the same approach and minimize the output energy (variance) from the
output of the antennas. In order to prevent the trivial solution (the zero-solution), we

MMSE

Figure 2.3: SIR as a function of the relative powers of the undesired users in a system with 10

users. The matched filter (dashed curves) and the MMSE (solid curves), SNR =10 dB. The

number of antennas is one, two and four (N=1,2,4).

N=4

N=2

N=1

N=1 N=2 N=4
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need to put some constraints on our filter coefficients (thereby the name anchored).
This is a generalization of the idea in [9].

Let us now state the optimization problem as follows. We want to find the filters hi

such that the output variance of  is minimized under the constraints that the desired
user’s code sequence in every antenna can pass undistorted.

In order to formulate this in a compact form we introduce the GN×N matrix C and the
N×1 vector u as

C

s

s

s

=



















a

a

aN N

1 1 1

2 1 2

1

0 0

0 0

0 0

0 0

,

,

,

�

�

� �

�

(2.19)

u = 



a a aN1

2

2

2 2
�

T

(2.20)

where s1,i is the code sequence and ai is the complex phase factor of the desired user at
the ith antenna element. The minimization problem can now be formulated as

{ }� arg minh

C h u
h

=

=

E z
2

subject to: H

(2.21)

The formulation in (3.21) is general in that sense that if the interference environment
change (3.21) remains the same. The solution to this problem is found by the method
of Lagrange multipliers, see, e.g., [10]

[ ]h R C C R C uopt
H= − − −1 1 1

(2.22)

The minimum output variance is obtained by substituting (3.22) into (3.21):

{ } [ ]E z2 1 1
= − −

u C R C uH H
(2.23)

In [9] it was shown that the MOE criterion results in the MMSE detector which means
we have the same expression for the MSIR as in the previous section! For the optimal
performance of this receiver, see Section 3.2.1.1.
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Receiver algorithms

In this section, we present some algorithms suitable for implementation of the receiver
presented in the previous section. The optimum weight vectors calculated in Section 3
require knowledge of second-order statistics. Usually the statistics are not known
exactly but can be estimated from the received data. When implementing an
algorithm, two approaches can be taken: block processing, where the statistics are
estimated from a block of data and used in calculation of the optimum weight vector,
or continuous processing, where the weight vector is updated for each input sample so
that the resulting weight vector sequence converges to the optimum value. In block
processing, the computational cost can be large and the storage requirement increase
with the block length. Furthermore, if the environment is time-varying, the weights
need to be re-computed periodically. Therefore, in many cases, the continuous
processing are to prefer. Herein, the continuous processing is considered.

In Section 4.1, we apply the well-known least mean square (LMS) algorithm and its
normalized version (NLMS) to the MMSE receiver. Some simulation results are also
shown in the end of the section.

In Section 4.2, an algorithm for the linearly constrained minimization problem is
studied. The algorithm, proposed by Frost [11], was derived for adaptive array
processing. The algorithm is basically a least mean square (LMS) algorithm that takes
care of the linear constraint at every iteration. Also here, we consider a normalized
version of the algorithm. In the end of the section some simulation results are shown.

Adaptive MMSE receiver

For the adaptive implementation of the MMSE receiver, we can choose among many
different algorithms. The choice of algorithm is as always a tradeoff  between the
complexity of the algorithm and the speed of convergence. Due to the constraint on
the complexity of the mobile receiver, we consider two types of the least mean square
(LMS) algorithm: the conventional LMS and the normalized LMS (NLMS). Other
more complex algorithms like recursive least squares (RLS) types of algorithms is not
considered here. The interested reader is referred to [1] for other types of algorithms.
The LMS and NLMS are well-known algorithms and can be found in practically all
books dealing with adaptive filters. For a detailed derivation of the algorithms, see,
e.g., [11].

Let us start with the conventional LMS algorithm. The update equation is given by

[ ]h h r( ) ( ) ( ) ( )( )m m b z m mm+ = + −
∗

1 1µ (3.1)

where µ is the step size and b1
(m) is the mth bit of the training sequence (reference

signal), z(m) is the receiver output and r (m) is the input signal. After the initial
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adaptation, the receiver is switched to decision-directed mode, that is, the receiver
uses the old bit estimates as reference signal.

The update equation for NLMS algorithm which chooses an optimal step size in order
to achieve fast convergence is given by

[ ]h h
r r

r( ) ( )
( ) ( )

( ) ( )( )m m
m m

b z m mn m+ = +
+

−
∗

1 1

µ
γ H (3.2)

where µn is the normalized step size (in the range 0 ≤ µn ≤ 2) that controls the
misadjustment (algorithm noise), γ is small positive constant included to avoid large
step sizes when rH(m) r(m) becomes small. An alternative and very elegant derivation
of the NLMS algorithm can be found in [12].

Simulations of the MMSE receiver

We now consider the implementation of the adaptive algorithms. We study the cases
with one, two and four antennas. The system under consideration  consists of five
users with spreading sequences taken as Gold codes of length 7 [13]. The desired user
has its amplitude normalized to unity, i.e., A1=1, and a signal-to-noise ratio in the
absence of multiple access interference of 8 dB at every antenna. All the interfering
users transmits have a relative power of 10 dB compared with the desired user. The
antennas are structured as a uniform linear array (ULA) with spacing half the
wavelength. The direction of arrival is set to 15°. The system consists of five users.

In Fig. 4.1, the SIR versus the number of iterations is shown for the LMS algorithm.
The results are averaged over 100 independent simulations. The step sizes used are:
µ=7·10-3 for one antenna, µ=5·10-3 for two antennas, and µ=3·10-3 for four antennas.
In the plots the horizontal dashed lines are the MSIR values and the solid lines
correspond to the matched filter solutions. The algorithm is switched to decision
directed mode after convergence.
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For the case of one antenna the algorithm has converged to its steady-state solution
after approximately 250 iterations. For two antennas it takes about 100 iteration to
converge. We can also see that the two antenna case reaches the steady-state value for
one antenna after approximately 40 iteration. In the case of four antennas, the steady-
state value is reached after 200 iterations and crosses the steady state values for one
and two antennas after 30 and 50 iterations respectively. In all cases, the initial values
are the matched filter solutions.

Figure 4.2, shows the same curves for the NLMS algorithm with µn=0.5. Also here,
the algorithm is switched to decision directed mode after convergence.

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

6

8

10

12

Number of iterations

S
IR

 (
dB

)

Figure 3.1: SIR as a function of the number of iterations with LMS algorithm in a system with five

users where the undesirable users have 10 dB higher power than the desired user. The number of

antennas are one, two and four (N=1,2,4).



19

From Fig. 4.2, we can see the faster convergence achieved with NLMS algorithm.
However, the increase in the convergence speed comes at the expense of a large
misadjustment as in all normalized algorithms.

Adaptive MOE receiver

In this section we study the adaptive implementation of the MOE receiver. In order to
be sure that our constraints (pass the code undistorted through every antenna branch),
we need to apply some constrained adaptive algorithm. In [11], an algorithm for a
linearly constrained optimization problem was derived. The algorithm, referred to as
the Frost algorithm, is an LMS-type of algorithm that ensure the constraint at every
iteration. While it is well-known that the LMS-type of algorithm suffers from slow
convergence it has been observed that the blind implementations (like the Frost
algorithm) is even more slow than the training based receivers (previous section).
Hence, there is a need for faster algorithms that can overcome this problem. However,
faster convergence often come on the expense of higher complexity (nothing in the
world is free!). One way to speed up the convergence is to use some normalized
algorithm like the normalized LMS (see previous section) or the binormalized data-
reusing (BNDR) LMS algorithm [14] together with the Frost structure. In [12] these
two algorithms were developed for the Frost structure. Here, we consider the
implementation of the conventional Frost algorithm (LMS) and the NLMS applied to
the Frost structure.

 The update equation for the conventional Frost algorithm is given by
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Figure 3.2: SIR as a function of the number of iterations with NLMS algorithm in a system with five users

where the undesirable users have 10 dB higher power than the desired user. The number of antennas are

one, two and four (N=1,2,4).
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[ ]h P h r F( ) ( ) ( ) ( )m m z m m+ = − +∗1 µ (3.3)

P I C C C C= − −( )H H1

(3.4)

F C C C u= −( )H 1 . (3.5)

The expression inside the brackets of (4.3) is the unconstrained LMS update of the
receiver coefficients with the reference signal set to zero. In general, the update does
not lie in the constraint hyper plane C h FH = . In order to move the unconstrained
update back onto the constraint hyper plane, it is first projected onto the constraint
subspace by the matrix P, i.e., all the components perpendicular to the plane C hH = 0
are removed. Finally, the vector is moved back to the constraint plane by adding the
vector F. The updated weight vector now satisfies the constraints within the numerical
precision used in the implementation. The structure of the algorithm is illustrated in
Fig. 4.3.

Now, we look into the constrained version of NLMS algorithm. As stated before, the
conventional Frost algorithm is only the conventional LMS algorithm projected onto
the constraint hyperplane (h Ph F( ) ( )m mLMS+ = + +1 1 ), so it might be tempting to

substitute this unconstrained LMS update with the unconstrained NLMS update, i.e.,
h Ph F( ) ( )m mNLMS+ = + +1 1 . This intuitive approach will give substantial increase in

convergence speed when compared to the conventional Frost algorithm. However, it is
shown in [12] that this approach lacks an optimization criterion and should instead be
replaced with the following update:

h P h
r Pr

r F( ) ( )
( ) ( )

( ) ( )m m
m m

z m mn+ = −
+









 +∗1

µ
γ H

(3.6)

In the next section, we perform some simulations of the adaptive MOE receiver.
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-

+r z

Figure 3.3: Block diagram of the Frost algorithm.
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Simulations of the MOE receiver

In this section we simulate the same system as for the adaptive implementation of the
MMSE receiver: 5 users using Gold codes of length 7, SNR set to 8 dB at every
antenna for the desired user in the absence of multiple access interference, and the
interfering users 10 dB higher power than the desired user.

In our simulations of the MMSE receiver we did not touch the subject of choosing a
suitable step size for the LMS algorithm. This is, however, an important issue we do
not want to leave out. It is well-known that the choice of a suitable step size is a
tradeoff between the convergence speed and the steady-state value. Smaller step size,
results in slower convergence speed but a close to optimum steady-state value, and
vice versa. Remembering that the blind implementation in general is slower than the
training based implementation, we can only compensate this decrease in convergence
rate by making the step size larger. As a consequence we will loose some performance
in our steady-state value. While this might be quite trivial we have not yet considered
the influence of the number of antennas.

Figure 4.4 shows the theoretical upper bound of the SIR as a function of the number
of antennas for some different choices of step size. The figure legends are the values
of the step size. The optimum SIR is denoted ‘opt.’.
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From Fig. 4.4, we see that the choice of step size has a major impact of the steady-
state SIR. For example, if we choose the step size to be 0.001, the performance when
using four antennas becomes worse than for three antennas.

In practice, we do not have knowledge of the curves in Fig. 4.4. Therefore, some
sophisticated means of choosing an appropriate step size is needed. One way is
estimate the input power and use a fraction of the estimate as the step size. Another
way is the use of an time-varying step size, see, e.g., [10,13] .

Let us now take a look at the adaptive implementations of the MOE receiver. Fig. 4.5
shows the SIR as a function of the number of iterations using the conventional Frost
(LMS) algorithm. The step sizes used are: µ=10·10-3 for one antenna, µ=3·10-3 for two
antennas, and µ=1·10-3 for four antennas. In the plots the horizontal dashed lines are
the MSIR values and the solid lines correspond to the matched filter solutions.
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Figure 3.4: Steady-state SIR as a function of the number of antennas for some different step sizes in

the Frost-LMS algorithm for a system with five users where the undesirable users have 10 dB higher

power than the desired user.
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Fig. 4.6 shows the SIR as a function of the number of iterations using NLMS
algorithm applied to the Frost structure. The step sizes used are µn=0.1, µn=0.2, and
µn=0.2 for one, two and four antennas respectively.
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Figure 3.5: SIR as a function of the number of iterations with Frost-LMS algorithm in a

system with five users where the undesirable users have 10 dB higher power than the

desired user. The number of antennas are one, two and four (N=1,2,4).
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Figure 3.6: SIR as a function of the number of iterations with Frost-NLMS algorithm in a system with

five users where the undesirable users have 10 dB higher power than the desired user. The number of

antennas are one, two and four (N=1,2,4).
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Comparing the both we can see that the Frost-NLMS in Fig. 4.6 has a slightly faster
convergence rate than the Frost-LMS in Fig. 4.5. Comparing with the results achieved
here with the results for the MMSE receiver, we can clearly see the faster convergence
rate when using the training-based MMSE receiver. The only solution for MOE
receiver to achieve a performance (in terms of convergence speed) comparable with
MMSE receiver, is to use an adaptive step size. For example, in the Frost-NLMS, we
can use the optimal step size sequence from [15]. In [12] a CDMA mobile receiver
equipped with one antenna was simulated using the time-varying step size in [12], and
considerable speed up in convergence rate was reported. The implementation to cope
with multiple antennas is rather straightforward but is not treated here.
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Conclusions

This report dealt with adaptive multiuser detection at a DS-CDMA mobile receiver
equipped with multiple antennas. Two different multiple-antenna receivers were
considered: the MMSE receiver and the MOE receiver. Both receivers were extended
from their single antenna implementation to multiple antennas. Adaptive
implementations of the receivers were studied and the performance of the two
schemes were exemplified with simulations.

The results showed that both the linear receivers overcomes the problems associated
with matched filter, that is, it accounts for multiple users interference and is
insensitive to changes in the interfering users’ powers. By doubling the number of
antennas a 3 dB gain is achieved. In the matched filter the improvement depends on
the number of interfering users and their powers. For a large number of users or high
interfering powers the improvement achieved with matched filter becomes negligible.

Simulations showed the functioning of the adaptive schemes used for updating the
receiver coefficients. In both receiver structures an LMS algorithm and an NLMS
algorithm was used. The NLMS algorithm gives a faster convergence than the LMS
algorithm. The training-based MMSE receiver offers a faster convergence rate than
the blind MOE receiver. However, the convergence speed for MOE receiver can
increase if an adaptive step size is used.
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