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Abstract
In this work the dynamic routing and wavelength assignment problem (D-
RWA) in all-optical WDM network is studied. The problem is approached in
the framework of the Markov Decision Process theory. In practice the optimal
policy cannot be exactly calculated due to the huge size of the state space,
but heuristic algorithms can come quite close to the optimal policy. The main
contribution of the work is the application of so called first policy iteration to
D-RWA.

In the first policy iteration one tries to improve a given policy. This is done
by considering the expected future costs that consist of the immediate cost of
the chosen action and the relative cost of the next state. Immediate costs are
known while the relative costs are not. Furthermore, the relative costs of the
states cannot be obtained for every state due to the astronomical state space
size. However, at each decision epoch the relative values are only needed for a
small set of possible actions. Thus, instead of trying to solve them exactly their
values are estimated by simulations.

The work consists of four parts. In first part a brief introduction to all-optical
WDM networks is given. The second part is a survey of the static routing
and wavelength assignment problem, where the problem is described together
with some heuristic RWA algorithms. The third part of the thesis considers the
dynamic routing and wavelength assignment problem and contains, among
other things, a description how the first policy iteration can be applied to D-
RWA problem, together with some simulation results. The fourth part contains
a brief survey of the important restoration and protection aspects in all-optical
networks.
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Chapter 1

Introduction

The rapid growth of the Internet traffic has been the driving force for faster
and more reliable data communication networks. Wavelength division multi-
plexing (WDM) is a very promising technology to meet these ever increasing
demands. In a WDM network several optical signals are sent on the same fibre
using different wavelength channels. Sometimes the term dense wavelength
division multiplexing (DWDM) is used to distinguish the technology from the
broadband WDM systems where two widely separated signals (typically 1310
nm and 1550 nm) share a common fibre. In DWDM up to 40 or 80 signals are
combined in the same fibre.

Traditionally only a small fraction of the fibre capacity is in use, but by using
WDM it is possible to exploit this huge capacity more efficiently. The possi-
bility to use the existing fibres more efficiently makes WDM a very attractive
alternative commercially, as it is often very expensive to install new fibres in
the ground. This is the case especially in densely populated areas like cities,
where fibres must be dug under streets etc.

WDM technology has been recognized as one of the key components of the
future networks. The commercialization of WDM technology is progressing
rapidly. Especially important for the development of the WDM technology
was the invention of the optical fibre amplifier in 1987 (Erbium doped fibre
amplifier, EDFA). The optical fibre amplifier is a component capable to am-
plify several optical signals at the same time without converting them first to
electrical domain (opto-electronic amplification). It is also worth noting that
EDFA can be used to amplify signals of different bit rates and modulations.
Other important WDM components include lasers, receivers, wavelength di-
vision multiplexers, wavelength converters, optical splitters and tunable filters
among others.

There is also a wide interest towards the optical networking in academic com-
munity as it offers a rich research field for scientists from the component level
up to the network protocols. Also popular scientific magazines have published

1



1. INTRODUCTION

articles about the optical networks [Sti01, BGD01, Blu01].

The first WDM systems being currently deployed are point-to-point systems,
where the gain is simply a larger link capacity. Many companies are already
offering such solutions in their product line. The next step in backbone net-
works will probably be the wavelength routed networks (WRN). WRN is a
very scalable1 network and can exploit the vast bandwidth of the optical fibre
throughout the network more efficiently. WRN also allows quick restoration
schemes and modifications of underlying network without reconfiguration of
upper layers. Hence the optical layer is used to build the so called virtual
topology over the physical network for the logical layer (e.g. ATM). The vir-
tual topology can remain the same even if the physical networks changes for
some reason like failure in some part of the network.

This work focuses on the dynamic control of fully optical wavelength routed
WDM network, in other words how the arriving connections, i.e. lightpath
requests, should be configured into the network in order to maximize the ex-
pected revenues. The networks considered in this thesis are arbitrary mesh
networks instead of regular structures like ring networks. The optimization
goal is to minimize some infinite time horizon cost function such as the block-
ing probability. The analysis is done within the framework of Markov Decision
Processes (MDP). The MDP theory is widely applied in the field of telecommu-
nications, e.g. in the traditional circuit switched networks.

1.1 Outline of the work

In Chapter 2, the WDM technology is briefly discussed to give necessary infor-
mation about the background of the problem. The key components of a WDM
network are presented. Also the current technologies like SONET, SDH and
ATM are introduced. Then, in the next chapter, configuration of static traffic
is formulated in a few alternative ways. Generally the problem is to configure
a given set of lightpath requests into the network. The chapter also contains
some bounds for the number of wavelengths required to satisfy given light-
path requests. Mathematically the problem is a resource allocation problem.

Chapter 4 first defines the dynamic routing and wavelength assignment (D-
RWA) problem. Then an exact algorithm to solve D-RWA problem within the
MDP theory framework is presented. Due to the prohibitive size of the state
space this is not practical and some suboptimal solution must be used. This
means using heuristic policies. The main content of the chapter is the first
iteration policy, which is used to improve the current (heuristic) policy. The
treatment is also extended outside Markovian traffic models.

In Chapter 5 the presented heuristic algorithms are evaluated. The first policy
iteration approach is tested and reported to perform well. Then some con-

1In comparison, broadcast and select optical networks do not scale well with the number
of end systems. 2
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clusions about the heuristic policies and the problem are drawn. Finally, in
Chapter 6 the aspects of restoration and survivability of WDM-network are
briefly discussed. The appendices contain background material mainly from
the graph theory and the MDP theory. Also one appendix contains a brief de-
scription of the simulator program used to obtain the simulation results pre-
sented in Chapter 5.
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Chapter 2

Introduction to WDM

Wavelength division multiplexing (WDM) is a promising technology for future
all-optical networks. In WDM several optical signals using different wave-
lengths share the same fibre. The capacity of such fibre links can be huge,
even terabits per second. So essentially the optical spectrum is used more ef-
ficiently. Routing in the network nodes is based on wavelengths of incoming
signals [Muk97, RS98, Wil97]. Currently the WDM technology is used to in-
crease the capacity of optical links where at the end of each link the signal
is converted back to electrical domain. But the technology is progressing to-
wards transparent all-optical networks where the signal is routed through the
network in the optical domain.

λ λ λ

...
1 2 8

50 GHz

Figure 2.1: The optical spectrum and 8 wavelength channels.

The International Telecommunication Union (ITU) has standardized the use of
the wavelength channels in a WDM link in standard G.692 (see [ITU98]). The
channel spacing is proposed to be 50 GHz or 100 GHz around the reference
frequency of 193.10 THz, as depicted in Fig. 2.1. 193.10 THz corresponds to
about 1550 nm, hence the proposal is meant for the 1540 nm - 1560 nm pass
band of the optical fibre.

2.1 Components of WDM-Network

During recent years lots of effort has been put into the development of better
optical components to enable all-optical WDM-networks (AON) [EM00b]. The
most important components are light sources, tunable optical filters, optical
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switches and of course the fibre. Different components are briefly presented in
the following sections.

2.1.1 Light Sources

One important element of an optical system is the light source. For commu-
nication purposes a good light source should be quickly tunable with a wide
range of wavelengths. To make a component also commercially attractive low
power consumption and low price are vital parameters [EM00b]. The time
scale of tuning depends on case, with the optical packet switching the require-
ments are somewhere between microseconds and nanoseconds while with cir-
cuit switched WDM-networks the time scale is slower.

Here is a list of several candidates [EM00b, Muk97]:

1. Mechanically tuned lasers

2. Acousto-optically and electro-optically tuned lasers

3. Injection current tuned lasers

4. Switched sources

5. Array sources (using arrayed waveguide gratings (AWG) or distributed-
feedback (DFB) lasers)

Mechanically tuned lasers, for example, have a tuning time of the order of mil-
liseconds and are thus too slow for packet switched optical networks. Gener-
ally the choice between different light source types depends on the application
and the two most important parameters for light sources are the tuning time
and the tuning range.

2.1.2 Tunable Filters

A tunable optical filter is also an important part of the optical network. Many
promising approaches have been studied including Fabry-Perot, acousto-optic,
electro-optic and liquid crystal Fabry-Perot filters (see e.g. [EM00b, Muk97])
The filters have two important parameters dealing with the performance: tun-
ing range and tuning time. The tuning ranges are from around 10 nm up to
500 nm, while the tuning time is from nanoseconds up to 10 milliseconds.

6
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2.1.3 Optical Switches

The optical switch, or optical cross-connect (OXC), is a device which can be
dynamically configured to connect given input ports to any of the output ports.
The optical switches can be classified according to how flexible they are [SB99]:

1. A non-blocking switch means any connection pattern can be realized by
reconnection of some or all of the current connections.

2. Wide-sense non-blocking switch is a switch which can, with careful configu-
ration, add any new connection without interrupting previously config-
ured connections through the switch.

3. Strict-sense non-blocking switch, on the other hand, means that a simple
configuration strategy allows adding new connections to the switch any
time without interrupting any of the current connections.

Clearly the number of elements and device complexity grows at the same time
as the flexibility. This means a trade-off between hardware complexity and
management complexity.

Wavelength channels

In WDM-networks each fibre contains W wavelength channels, and thus the
optical switches should be capable to treat channels individually. The optical
cross-connects used in WDM-networks can be divided into two categories. A
wavelength selective cross-connect (WSXC) is a device capable to configure
any given input λ-channel from arbitrary input port to a given output port
(using the same wavelength).

Wavelength translation (conversion) is an operation where an incoming signal
using λ1-channel is converted to another channel λ2 at the output port. Wave-
length interchange cross-connect (WIXC), depicted in Fig. 2.2, is a more ad-
vanced device than WSXC which can manipulate wavelengths of the signals as
well, i.e. an incoming signal can emerge from the switch using another wave-
length. Hence, such a device can configure any λ1-channel from any input
port to any output port using λ2-channel, i.e. it is capable of doing wavelength
translations as well. Clearly a WIXC device is more complex than WSXC, but it
also gives more flexibility in the configuration of the network, and hence leads
to more efficient use of the network resources.

Note that both WSXC and WIXC are devices where every input channel is
connected to no more than one output-channel (permutation switch).

7
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2 λ  + λ 1 211
λ 2

1λ 
λ 3

λ λ  + λ 
WIXCWSXC

Figure 2.2: The basic components of the wavelength routed network. Wavelength se-
lective cross-connect (WSXC) routes incoming signals per wavelength basis, while
wavelength interchange cross-connect (WIXC) has also capability to perform wave-
length translations.

2.1.4 Wavelength Conversion

Wavelength conversion, as noted in the previous section, allows more effi-
cient use of the network resources. The reason is that without it so called
wavelength-continuity constraint has to be satisfied, i.e. the lightpath reserves
the same wavelength all the way along the route. Hence, even if there are free
channels available in every link of the network, some connections may not be
configured unless wavelength conversion is possible in some of the nodes.

Again, an easy solution is to do the opto-electronic wavelength conversion
where the optical signal is first converted to the electric domain and then re-
produced in the optical domain at a different wavelength. The drawback with
this approach is the limited bit rate of electronics.

An other approach is to do the conversion in the optical domain. Suggested
solutions include using the four-wave mixing and fibre nonlinearities, and
cross modulation with active semiconductor devices. An up-to-date survey
on wavelength conversion can be found in [EM00a].

2.1.5 Optical Amplifiers

The attenuation of optical signals is low in comparison with electrical signals.
Still long-distance links may need amplifiers in order to operate properly. The
traditional way to solve the problem is to convert the signal back to electrical
domain for amplification and retransmit it optically. This approach, however,
requires knowledge of the used bit rate and modulation. A new solution is
to use amplifiers operating totally in the optical domain. In particular, the
erbium doped fibre amplifier (EDFA) operating at 1540 nm region has proven
to be an excellent choice for the WDM systems. The amplifier is transparent to
used coding and bit-rate, and thus suits well to all-optical framework. Also a
similar amplifier for the 1300 nm region has been built using praseodymium
instead of erbium.

8
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2.2 Today’s Technology and Solutions

In the field of data communications things change rapidly. What is the state of
the art technology today is probably old technology tomorrow. In this chapter
some idea about the limitations of the current optical technology is given. It
will serve as a background for the stochastic models and optimization tech-
niques presented in the later chapters.

2.2.1 Internet Protocol, IP

The Internet Protocol (IP) has been a massive success story during the last
ten years. The dawn of the Internet was back in the 70’s when Arpanet was
created. Arpanet was funded by DARPA, the agency of U.S. Department of
Defense (DoD) in charge of advanced research projects [Hui95]. Since then
the Internet has grown to a worldwide network and the number of comput-
ers connected to it grows extremely fast. Nowadays the Internet standards are
defined within IETF (the Internet Engineering Task Force), which coordinates
the standardization work in the Internet community. The requests for com-
ments, shortly RFCs, form the backbone of documents describing how things
are done in the Internet.

The IP defines a packet based way to communicate over a heterogeneous en-
vironment including slow modem links as well as high capacity backbone
routes. Generally the IP network is a best effort network, with no guaran-
tees for any quality of service. In case there is too much traffic, packets will
be lost. The related layer 4 protocols the applications use are UDP (Univer-
sal Datagram Protocol) and TCP (transmission control protocol), and are thus
built upon the IP. The UDP is a connectionless protocol to send an IP packet.
Nothing is guaranteed, the packet may be lost without any feedback. It is left
to the application to solve possible problems. The TCP, on the other hand,
is a connection oriented protocol where the stream of bytes is guaranteed to
reach the destination in correct order (or the failure is reported to the both
ends). TCP/IP also includes mechanisms for the congestion control with slow
start where the transmission rate is slowly increased until a packet is lost and
the transmission speed is cut to a half. Hence, TCP/IP is scalable to different
transmission speeds.

Many of the current popular applications including E-mail, WWW, ftp and tel-
net rely on TCP/IP, while UDP is used in some applications like NFS (network
file system) and real-time applications.

9



2. INTRODUCTION TO WDM

2.2.2 SDH and SONET

SDH stands for the synchronous digital hierarchy and is a widely used trans-
mission system in Europe. SONET, synchronous optical network, is its Amer-
ican counterpart. SDH is defined by the European Telecommunications Stan-
dards Institute (ETSI), while the SONET is defined by the American National
Standards Institution (ANSI). These standards define the line rates, coding
schemes, bit-rate hierarchies, restoration and network management. Equip-
ment from different vendors can be used together and network operators get
more freedom in building their networks.

Both systems use a small time frame containing a header and a payload as a ba-
sic building block. Higher transmission rates are obtained by byte-interleaving
the basic time frames1. Almost all of the processing is done digitally. Optical
signals in SONET are denoted with OC-x, where x defines the bit-rate. For
example, OC-48 signal means 2.5 Gbit/s and OC-192 signal corresponds to
about 10 Gbit/s transmission speed. The SDH counterparts for the OC-signals
are STM-signals where STM-1 designates transport rate of 155.52 Mbps and
other STM-4, STM-16 and STM-64 have similarly 4, 16 and 64 times higher
transmission speed than the STM-1 signal. Thus, STM-64 and OC-192 both
have a transmission rate of 10 Gbps.

2.2.3 ATM

The asynchronous transfer mode (ATM) has received a lot of research interest
during the last years as well. It is a cell-oriented2 switching and multiplexing
technology. In the ATM concept the basic building block is a 53-byte long
cell divided into 5 bytes long header and 48 bytes long payload (see Fig. 2.3).
Originally ATM was developed to support different kinds of traffic (service
classes) with different quality of service (QoS) requirements and intended to
be used up to the end nodes, but currently it is mainly used in the backbone
networks.

PAYLOAD

HEADER 5 bytes

48 bytes

Figure 2.3: ATM-cell, header contains information about VP and VC and payload the
actual data.

1Hence the name synchronous as whole network is assumed to work synchronously
2Cell is a fixed length packet
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Optical layer

IP/MPLS

ATM

Physical layer

Optical layerOptical layer

IP/MPLS

IP/MPLS

IP/MPLS

SONET/SDH SONET/SDH

Figure 2.4: Possible alternatives for IP-over-WDM solutions.

ATM is a connection oriented network technology, i.e. the connections must be
set up before information can be transferred, and later released. Two impor-
tant concepts with ATM technology are virtual paths (VP) and virtual channels
(VC). The virtual paths are used to form a virtual topology over the physical
ATM network. Each virtual path carries one or more virtual channels which
are statistically multiplexed in the virtual path.

2.3 Evolution of WDM Technology

Telecommunication field is full of standards defining different layers for the
whole infrastructure. In the past the end users were people making phone
calls or using fax machines etc. But now it has become very clear that in the
future almost all the traffic will be IP-based. The evolution will go towards
IP-over-WDM networks, where several alternative approaches have been pro-
posed [BRM00, GDW00]. In Fig. 2.4 some of the possible layering alternatives
are depicted. Each additional layer brings naturally some extra overhead to
the transmission. Hence, the standard IP over ATM over SONET/SDH over
WDM mapping can be considered as an inefficient solution. The other ex-
treme is a direct IP/MPLS over WDM solution, so called λ-labeling, presented
in [Gha00].

2.4 Wavelength Routed Networks

A wavelength routed network is an all-optical network, where the routing in
the network nodes is based on the wavelength of the incoming signal [SB99].
The configuration of a WRN consists of choosing a free route and wavelength
for each lightpath. Hence there are transparent optical channels, lighpaths,
configured in the network. WRNs are very scalable and can achieve high util-
isation degree in arbitrary mesh network.

All the subsequent chapters in this work concern WRNs. In Chapter 3 a static
configuration problem is presented, and in Chapter 4 the lightpath requests
follow some (stochastic) traffic process.
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2.5 Linear Lightwave Networks

A linear lightwave network (LLN) is an optical network, where wavelength
selective routing in the nodes is replaced by linear divider combiners (LDC)
[BSSLB95,SB99]. A linear divider combiner is a linear network element, which
combines signals from different sources in some proportion and then the com-
bined signal emerges to given output ports in arbitrary fractions. Hence sev-
eral wavelength channels are treated as a one unit3, which often leads to so
called fortuitous destinations [SB99]. LLNs are not considered in the rest of
this thesis.

2.6 Logically Routed Networks

The possible layered approaches presented earlier lead to a concept of logi-
cally routed networks [SB99]. A logically routed network (LRN) is a concept
where a logical topology is realised over a physical optical topology (see Fig.
2.5). Thus, transparent all-optical connections are configured into the physical
network, and logical switching nodes (LSN) see the logical topology instead
of the physical. This mapping allows changing the physical network, e.g. in
case of some network failures, without changing the logical topology seen by
the upper layers. Hence, it simplifies the description of the network to upper
layers. A typical LSN could be an ATM switch.

Layer

Logical
Layer

Physical

Logical Switching Node

LSN

NAS

LS

ONN

Figure 2.5: A logically Routed Network (LRN) where a logical topology is build over a
physical topology. The Logical switching nodes (LSN) operate on logical topology, e.g.
ATM or SONET switches (The figure is taken from [SB99]).

Hence, the connections end users require can be created between any (end
user) node pair, i.e. there is a full connectivity. In the logical layer (ATM) switch
finds a feasible route via possible zero or more intermediate LSNs between the
LSNs the end users are connected to. Similarly, the optical layer supports the
optical connections for the logical layer. The layered architecture of the optical
networks is depicted in Fig. 2.6 [SB99].

3In waveband routing a certain set of channels, i.e. band.
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Figure 2.6: Layered architecture of the optical networks.

In practice the bandwidths the end users require are far below one optical
channel. Thus, depending on the chosen logical topology the end user require-
ments can be fulfilled or not. The limitations on the logical topology are set by
the physical network under it. Hence, in a generic level one can consider a
problem where there are (time dependent) traffic flows between optical net-
work nodes (ONN). These flows can be of any size from some proportion of a
single optical channel to several channels. Once the logical topology is fixed
the logical layer is suppose to route the data flows in it if only possible. This
means that some data flows will be aggregated on the optical layer where they
travel to the next LSN, which demultiplexes them to different data streams etc.

2.6.1 Multihop Network Configuration Problem

Generally, by a multihop network we mean such a network where the data
flow (packet flow) requirements are no longer integer multiples of the capacity
of a single wavelength channel, but arbitrary multiples or fractions of that ca-
pacity. Furthermore, these flows can be aggregated in any node to a single flow
and later split again in some intermediate node, and then forwarded to other
directions. Thus each data flow uses possibly more than one optical hop, hence
the name. This causes extra processing load to the intermediate nodes and in-
creases delays the packets experience, but allows more efficient use of the op-
tical resources. The aggregation corresponds to the routing in the logical layer.
Therefore, it is not usually practical to configure the network so that the logical
and physical layers are topologically equivalent, because then the conversion
between layers causes unnecessary delays to the traffic [RS96,MBRM96,ZA95].

This kind of problem can be solved in a hierarchical way presented in Fig. 2.7.
In the first layer current (average) data streams between the nodes are mapped
to lightpath requests, i.e. the requirements for the logical topology are set. If
there is enough room in the network, each lightpath request can be fulfilled
and a feasible solution is found.

Translation from the packet world to the lightpath world essentially defines
the lightpath(s) each packet uses to travel through the network towards the
destination node. Once this decision is made the problem reduces to assign-
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(lightpaths)
Singlehop problem

Routing

Multihop problem

Routing and
wavelength
assignment

(packets)

assignment
Wavelength

Figure 2.7: Hierarchical model of WDM network configuration.

ment of lightpaths in the network (the second box from the top in Fig. 2.7).

The establishment of lightpaths in the network, on the other hand, is tradition-
ally solved in one or two phases. By one phase solution we mean an algorithm
where both the route (for lightpath) and its wavelength(s) are determined si-
multaneously. By two phase solution we mean an algorithm where the path
is first fixed for each lightpath and then a feasible wavelength is assigned to
each lightpath (see Section 3.2). Generally shorter paths are usually good can-
didates.

In the later sections we concentrate on the configuration of the physical net-
work layer, i.e. the problem is to configure the given lightpaths into the net-
work. Or equivalently, a given logical topology is to be realized in the physical
layer.

2.7 Optical Packet Switching

In contrast to the circuit switched WDM networks the optical packet switching
offers even more flexibility. The often used idea is to build local area networks
using optical packet switching. The photonic packet switching, however, in-
volves many open questions [YMD00,PMMB00,BGD01]. The proposals can be
divided to two categories, namely slotted and unslotted. In the slotted solution
each packet has a constant length and the operation is synchronous, while in
the unslotted case packet lengths can vary and the operation is asynchronous.
Generally controlling the delay in photonic packet switched networks is an
important issue.
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In the electronic domain the contention in packet switching is resolved by a
store-and-forward technique [YMD00]. Thus in the case of contention pack-
ets are stored in a queue from which they are sent further later. In the optical
transmission the buffering is a complex task as there is no optical random ac-
cess memory (RAM) available. The solution is to use fixed length delay lines.

Other possible schemes to deal with contention include deflection routing,
where otherwise lost packets are sent to some other direction in the network,
where they will be forwarded again towards the original destination.

The header format must be chosen carefully as the capacity of optical network
is huge and the processing of the headers must be accomplished in a shorter
time interval than what is the case in electrical networks. It is likely that header
processing must be done first electronically which means a conversion from
optical to electrical domain for routing decision, and later back to optical.
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Chapter 3

Routing and Wavelength
Assignment Under Static Traffic

3.1 Introduction

The routing and wavelength assignment (RWA) problem in wavelength routed
WDM networks (WRN) consists of choosing a route and a wavelength (RW-
pair) for each connection so that no two connections using the same wave-
length share the same fibre [BM96, Bar98]. The requirement that connections
sharing the same fibre must use different wavelength channels is often referred
as distinct channel assignment requirement, or shortly DCA (see e.g. [SB99,RS98,
Muk97]):

Definition 3.1 (Distinct Channel Assignment [DCA])
Connections sharing a common fibre must use distinct wavelengths.

A violation of the DCA constraint is often referred to as a wavelength con-
flict. Furthermore, if the wavelength conversion is not possible in the network
nodes, then an additional constraint, called wavelength continuity, must be sat-
isfied, i.e. each connection must use the same wavelength on every link. This
constraint together with DCA give the RWA problem in all-optical network its
special characteristics.

In this chapter it is assumed that traffic is static, i.e. the problem is to configure
a given static set of connections between the given nodes into the network. The
network itself can be a single or multifibre network. This kind of approach is
relevant in the backbone networks, where it may be reasonable to assume that
the traffic is static.

Another kind of problem formulation arises in the context of Linear Lightwave
Networks (LLN) where wavelength selective routing in the nodes is replaced
by Linear Divider Combiners (LDC) [BSSLB95, SB99]. This case is not consid-
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ered in this thesis.

The static case of the routing and wavelength assignment problem has been
widely studied in the literature. For the reference see e.g. [TP95,BB97,GSM97].
In this chapter we give a brief introduction to RWA problem under static traffic
without going into any details.

Consider the following problem:

Problem 1 (Static Routing and Wavelength Assignment[S-RWA])

• Nodes and links of physical network are given, where each link has a
certain number of bidirectional fibres (i.e. fibre pairs)

• A static traffic matrix defining the number of lightpaths required be-
tween each node pair is given

• Wavelength conversion is not possible in the network nodes (usually)

• Problem: Determine a routing and wavelength assignment with minimal
number of wavelengths

The absence of wavelength conversion means that wavelength continuity con-
straint must be satisfied in addition to the DCA constraint. The current tech-
nology sets a bound to the maximum number of wavelengths available, and if
the solution uses more than that it cannot be realized in practice. Hence, solv-
ing the problem answers the question whether a given traffic requirements can
be satisfied with current physical network, or do we have to add new links (or
fibres) to the network in order to be able to satisfy given traffic requirements.
Later in Section 3.4 the problem definition will be extended to allow the instal-
lation of new fibres to the links with additional cost and the optimization goal
becomes the minimization of the costs.

In Fig. 3.1 an example wavelength routed network is depicted. In the example
network a lightpath is configured between each node pair. The wavelength
translation is assumed to be impossible in the network nodes (WSXC). The
shown configuration uses 5 wavelengths, which is the optimal configuration
in this case.

3.2 Routing and Wavelength Assignment as Sepa-
rate Problems

The static RWA problem can be solved either in one phase, where both route
and wavelength is assigned at the same time, or in two phases, where first the
routes are fixed and then a feasible wavelength assignment is determined for
the given routing. The latter approach has proven to work quite well and is
briefly explained in this section.
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Figure 3.1: A hypothetical WDM network in Finland with a connection between every
node pair.

3.2.1 Routing

The traditional way to solve the static RWA problem is to first determine the
routes for all connections and then assign wavelengths to the connections.
Even though the problems are not independent, this is likely to give moder-
ately good configurations. The usual way to choose the routes is to choose
(one of) the shortest path(s) for each connection (for shortest path algorithms
see B.2). Longer routes use more network resources and are likely to lead to
less efficient configurations. If there are several equally short paths, then one
of them is randomly chosen. The optimal configuration is often obtained by
using short routes, but not necessary the shortest one for every route (in order
to avoid unnecessary congestion on some links).

3.2.2 Wavelength Assignment

The unique feature for WDM-networks is that wavelength conflicts are not
allowed (DCA constraint), i.e. no two connections using the same wavelength
may share a joint link (or fibre to be exact). Once routing is fixed the problem is
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to assign feasible wavelengths with minimum number of wavelengths in order
to satisfy constraints set by the technology. In the general case there are several
fibres between some of the links. A straightforward approach is to assign the
lowest possible1 wavelength to one connection at a time in some order (greedy
algorithm). The order in which the wavelengths are assigned can be a critical
factor for greedy algorithms and a good thumb rule is to assign a wavelength
first to those connections which have most dependencies, i.e. share most links
with other connections.

Algorithm 1 Static wavelength assignment algorithm
Let K be the set of all connections
∀k ∈ K, let dk =

∑
i∈K

I(i and k use a common link)

Sort connections in the decreasing order of dk

Start from an empty network
for each k ∈ K in sorted order do

Configure connection k into the network using the lowest possible wave-
length(s)

end for

Graph Node Colouring Problem

The wavelength assignment in a single fibre network2 is equivalent to the node
colouring problem, which is an old and well-known graph theoretic problem
(see e.g. [SK77, AH77, BM76]). In the node colouring problem the task is to as-
sign a colour to each node of the given graph with minimal number of colours
so that no neighbour nodes have the same colour (see B.5). Several heuristic
algorithms have been applied to solve the problem including simulated an-
nealing, tabu search and genetic algorithms [Ree95, RSORS96, HdW87].

The relation between the wavelength assignment and graph node colouring is
the following. Assume that the set of routes is fixed and the task is to assign
a feasible wavelength to each connection, i.e. no two connection sharing the
same link may use the same wavelength. Let each connection represent a node
in a graph and set such connections as neighbours which share at least one
link. By finding the optimal colouring for this graph, we have also found the
optimal wavelength assignment for the given routing. The bad news is that the
graph node colouring problem is NP-complete. However, several reasonably
well working heuristic algorithms exist (see e.g. [HdW87, Mit76, Bré79]).

1Such wavelength which does not cause a wavelength conflict
2Or in multifibre network if the routing step has fixed also the used fibre on every link.
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3.2.3 Improving Current Solution

A straightforward way to improve the current solution is to change the set of
routes a little and then assign the wavelengths again3. If the wavelength as-
signment is not computationally too expensive an operation, then well-known
local search techniques like simulated annealing, genetic algorithms or tabu
search can be applied to obtain the optimal set of routes (for a given wave-
length assignment policy). Thus, the result from wavelength assignment is fed
back to upper level algorithm as the value of the cost function in the current
point (=routing). But as stated before, this requires a moderately fast wave-
length assignment algorithm.

3.3 Some Bounds for the Number of Required Wave-
lengths

A lower bound for the number of wavelength channels required can be found
by cutting the network into two parts [HV98,Bar98,SB99]. A certain number of
connections cross this cut. By dividing the number of such connections by the
number of physical fibres going through the cut we get the average number of
connections using those fibres (assuming no connection crosses the cut more
than once. Nonetheless, it is clear a lower bound for the number of connections
crossing the cut). The minimum number of wavelengths must be greater than
or equal to the average in order to avoid wavelength conflicts in those fibres,
i.e.

W ≥ max
cut

number of connections through plane
number of fibres crossing the plane

.

An example network is presented in Fig. 3.2 where the optimal cut states that
at least 3 wavelengths are required to realize a full connectivity within the
example network.

In the case of a fully-connected network the number of connections crossing
the cut is generally NA · (N−NA) where N is the total number of nodes and NA

is the number of nodes in part A. Hence, the maximum number of connections
crossing a cut is obtained by dividing the nodes to two equally big groups, giv-
ing the total N2

4
connections. However, the number of fibres crossing such a cut

can be numerous and generally the tightest lower bound is obtained by going
through all possible cuts. This is clearly infeasible in practice as the number of
possible cuts can be enormously large. However, a heuristic algorithm can be
used to find reasonably good cut within practical time.

On a single fibre link case when the problem has been reduced to graph node
colouring problem (routes are fixed), the graph theory (see Appendix B) also

3The opposite, changing wavelengths little and then finding a feasible routing, is usually
harder to solve.
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Figure 3.2: An example network with a cut. Assuming single fibre links and full logical
connectivity this gives total 5 connections crossing the cut and hence at least

⌈
5
2

⌉
= 3

wavelengths are required.

gives a few bounds for the number of required wavelengths. For example, an
upper bound for the number of required wavelengths is obtained from

Wmin ≤ ∆ + 1,

where ∆ is the maximum degree (the number of neighbours a connection has)
of the connection graph. Graph theoretic bounds, however, are usually not
very strict and thus not very useful in this context.

3.4 Network Planning

In the long run it is clear that new fibres have to be installed in the networks.
In this section a formulation of how a network provider could plan its future
network is presented. The model presented here assumes that some initial
network exists and in order to meet the new (static) traffic requirements the
network can be extended by adding new fibres to some links with certain costs.

Thus, it is assumed that a core network already contains a certain set of fibres,
and with an extra cost new fibres can be installed between any node pair. The
problem is to find the cheapest set of new fibres, so that the required connec-
tions can be configured in the network.

This problem formulation could be extended by allowing installation of WIXC
in place of WSXC with an extra cost, leading to so called sparse wavelength
conversion. The optimal location of the WIXCs is studied in [HMM99], but
in this section the nodes are assumed to be fixed. The formulation will be
extended to include the restoration requirements later in Section 6.6.

Problem 2 (Static Network Planning)

• Nodes and links of physical network are given, where each link has a
certain number of bidirectional fibres (i.e. fibre pairs)
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• The number of available wavelength channels is given (same for every
link)

• New fibres can be installed with extra costs

• A static traffic matrix is given, defining the number of lightpaths required
between each node pair

• Problem: Determine the cost-effective configuration for the network

This problem definition is a generalization of the Problem 1 where addition of
new fibres was not allowed. Here we will build the required logical connectiv-
ity in the optical domain no matter what it costs and the aim is to minimize the
costs. Note that the type of the network nodes, WSXC or WIXC, is not fixed
yet.

Cost from Fibre Installation

LetN be the set of network nodes and ‖N‖ = N . Denote the set of all possible
links by L. The cardinality of L is clearly N · (N − 1). The maximum of W
wavelengths are available in each fibre, constraint the technology sets. Define
the set of wavelengths as

W = {1, . . . , W}.
Let s` be the number of fibres already installed on link l. Formally, the cost of
fibres on link ` is

R`(m`) = the cost of m` fibres on link `, (3.1)

where the cost function is zero, when m` is smaller than or equal to the number
of already installed fibres s` on link `. Also, if it is practically impossible to
install a fibre between some node pair, the cost function has some arbitrary
high value for that link. Naturally, the form of the cost function depends on the
case. Especially installing one fibre or several fibres at the same time usually
costs about the same and the cost function is a monotonically growing step-
function. But for the simplicity the following piecewise linear cost models can
also be considered.

Assume, that the core network consists of single-fibre links (s` = 0 or s` = 1)
and we are only interested in adding extra fibres to those links which have
a fibre already, i.e. expanding their capacity. Assuming that installing a new
fibre to any link has a constant cost, i.e. it does not depend on the length of the
link etc., then the cost function could be defined as

R`(m`) =




0, when m` ≤ s`,
m` − s`, when s` > 0,
∞, otherwise.

(3.2)

The presented model assumes a fixed installing cost for any link, where as in
reality the costs can vary considerably. A more generic, but still partially linear
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model, which allows variation in link costs is the following:

R`(m`) =

{
0 when m` ≤ s`,
(m` − s`) · R` otherwise,

(3.3)

where R` is a link specific cost factor for installing a new fibre to link `. This
model is clearly a bit more realistic than the previous one. The distance and
other peculiarities of link can be taken into the account in some extent. Espe-
cially if it is infeasible to install additional fibres between some node pair, i.e.
link `, the cost factor R` =∞ (or some other arbitrary high value).

The cost function of the whole problem is the sum of the link costs R`(m`) over
all the links ` ∈ L:

total cost = E =
∑
`∈L

R`(m`), (3.4)

which is to be minimized. There are no other sources of cost, i.e. the configu-
ration of the network and such are assumed to be free.

Solving the Static Network Planning Problem

A simple approach to solve this more generic problem is to first solve the Prob-
lem 1 with current network without any additional fibres. If the solution uses
too many wavelengths, then one fibre is added to one of the most congested
links. Then the algorithm solving the Problem 1 is executed again. This is
repeated until the number of wavelengths is equal to or lower than the set
maximum.

Another way to approach the problem is to change routing and wavelength as-
signment as well as number of fibres at the same time. This will be considered
in the following sections where first a formulation for the networks consisting
of WSXC nodes is presented following a similar formulation for the networks
with WIXC nodes.

3.4.1 WSXC Case

The nodes of network are assumed to be WSXC’s, i.e. no wavelength conver-
sion is possible. Thus the solution to the problem picks one path and wave-
length for each connection. LetAz be the set of possible paths for connection z.
The model allowed addition of new fibres to the network, soAz contains every
path in a fully connected graph with the network nodes as vertices. Formally,
the solution is a mapping,

f : Z → Az ×W,

i.e. for each z ∈ Z , f(z) = (pz, cz) = (path, colour). Of course the shortest
path would be the one using the link directly connecting the source and target
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nodes. But if there is no fibre already installed between the nodes and the cost
of installing such a fibre is huge, it is very probable that such a solution is not
cost effective. Note that the cost realizing an arbitrary solution is defined by f ,
i.e. the solution f defines the amount of additional fibres, which in turn incurs
costs.

The choice of the paths and wavelengths, f , defines the number of required
fibres. If no new fibres are needed the cost is zero and we have found the
optimal solution. For an arbitrary path p define I(` ∈ p) to be 1 if path p goes
through link l, and otherwise zero. Define a usage matrix U as follows.

uc,` =
∑
z∈Z

I(` ∈ pz, c = cz),

i.e. uc,` is the number of connections using link ` with wavelength c. Thus, for
each link ` the number of fibres required m` (multiplicity) is clearly

m` = max
c∈W

uc,` = max
c∈W

∑
z∈Z

I(` ∈ pz, c = cz). (3.5)

The total cost of given configuration f can be obtained by using (3.4). Note that
we have not taken into account restoration aspects yet. These will be discussed
in Section 6.6.

Pruning the Search Space

Assume that we have found one feasible solution f0, which costs E units. Now
we can limit the set of possible paths, i.e. prune the search space. If the min-
imum cost of using some path p is greater than E, then there is no need to
consider that path. Formally if,∑

`∈L
I(` ∈ p) · R`(1) =

∑
`∈p

R`(1) ≥ E, (3.6)

then the path p cannot be part of better solution and can be excluded from Az.
In particular, if for some link ` it holds that R`(1) ≥ E, then that link and all
the paths using it can be excluded from the search space. Denote the pruned
subset of Az with Az,E. The pruning basically removes infeasible links from
the search space and also prunes individual paths as well. Further pruning
of the solution space (mappings) with some heuristic algorithms is probably
necessary as well to achieve reasonable running times.

3.4.2 WIXC Case

If all the nodes of the network have capability of wavelength conversion, the
formulation becomes slightly different, since with wavelength translation ca-
pable nodes each connection can switch to another wavelength on the next
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link. Hence, the wavelength continuity constraint is no longer valid and the
solution f only defines the used route for each connection. The total num-
ber of connections using the same link defines the number of required fibres.
Formally, the solution f is

f : Z → Az,

i.e. for each connection z ∈ Z , the solution f is f(z) = (pz) = (path). Also the
multiplicity on link ` is simply

m` =

⌈
1

W

∑
z∈Z

I(` ∈ pz)

⌉
,

i.e. the total number of users is divided by the number of available wave-
lengths W rounded up to the nearest integer. Again, once the multiplicity m` is
known for every link ` the total costs can be calculated using (3.4). The similar
pruning technique as was used in the WSXC case can be applied also here.

3.4.3 Implementation of Local Search

The routing and wavelength assignment problem is clearly very hard, so heuris-
tic algorithms are the only possible alternative. Here it is assumed that some
kind of local search method is used to find a feasible solution. Small changes
are made to the configuration hoping that it will eventually converge to the
global minimum.

The crucial points in every local search heuristic is how the neighbourhood and
energy function are defined. A straightforward choice for the energy function
is the cost of installing new fibres to the network. It is, however, probably not
the best choice as wide areas in the search space give constant value for the
total cost and local search method has no information about the direction to
proceed.

Two definitions for neighbourhood are given below.

Neighbourhood I

This neighbourhood of the current solution f consists of such functions f∗

where the path of one connection is changed. All the wavelengths can be
different (WSXC case). Denote the rerouted connection with zr. Then, the
mappings f = (p, c) and f ∗ = (p∗, c∗) are neighbours if for some zr

4

{
p∗(z) = p(z), ∀ z 6= zr

p∗(z) 6= p(z), when z = zr

4Actually zr partitions the set of neighbours of f .
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In practice, after some connection is rerouted all the wavelengths are reas-
signed while trying to minimize the maximum number of connections using
the same wavelength on any link which defines the multiplicity for each link.

Neighbourhood II

This neighbourhood is much smaller than the previous one. The neighbour-
hood of the current solution f consists of such functions f∗ where only one
connection zr has either new path, new wavelength or both. All the other con-
nections remain the same, i.e. wavelengths are not reassigned. Formally, the
mappings f and f ∗ are neighbours if for some zr it holds that{

f ∗(z) = f(z), ∀ z 6= zr

f ∗(z) 6= f(z), when z = zr

Thus, f and f ∗ are neighbours iff exactly one connection uses different route
or wavelength (or both). This neighbourhood seems to be too small for fast
convergence.

Relationship between neighbours: WIXC

An efficient way to speed up an algorithm is to use previous values when
calculating the new one.

In case of WIXC nodes the neighbourhoods I and II are identical. One must
keep book only about the number of users on every link, i.e. updating vector
UL accordingly. The usage vector for a neighbour solution can be obtained by
first decrementing the usage on the corresponding links along the old path,
and then incrementing usage on corresponding links along the new path.

The number of fibres needed per link is the number of connections divided by
the number of wavelength rounded up:

m` =
⌊ u`

W

⌋
.

Relationship between neighbours: WSXC

If the network consists of WSXC nodes then the network usage is defined by
the matrix UW×L (instead of a vector). The number of fibres needed per link is
simply the maximum value of column `:

m` = max
c

uc,`,

which defines the value of the cost function.
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In the neighbourhood I the wavelengths can be reassigned after changing the
route of one connection. In wavelength reassignment only the column sums of
the matrix U are preserved. Thus, a similar speeding up is not possible in this
case.

On the other hand with the neighbourhood II only some of the matrix U entries
change when the system moves to a neighbour state (i.e. from one solution to
another, f to f∗). Hence there is no need to recalculate the whole U matrix
but instead a new usage matrix can be obtained recursively from the previous.
Assume that connection zr is rerouted. Then the procedure of updating U and
obtaining the cost of the new solution becomes

1. Update the usage matrix U:

• Remove the old connection f(zr) = (p(zr), c(zr)) is from U, i.e. sub-
tract a binary vector p(zr) from the c(zr)

th row of U

• Add a new connection f ∗(zr) = (p∗(zr), c∗(zr)), i.e. add a binary vec-
tor p∗(zr) to c∗(zr)

th row of U

2. Update the number of the fibres required on each link m`:

• the number of required fibres m` can be lower only if ` ∈ p(zr) and
m` = uc(zr),` before removal

• the number of required fibres m` increases by one (m` ← m` + 1),
only if ` ∈ p∗(zr) and m` = uc∗(zr),` before removal

3. Determine the value of the cost function (3.4), which is a function of the
number of fibres m`

3.5 Summary

In this chapter the configuration problem of static WDM-networks was briefly
formulated. Two alternative formulations were presented; Problem 1 answers
the question whether given connections can be configured to the current phys-
ical optical network, while in problem 2 the goal is to minimize the cost from
installing new fibres to satisfy given traffic requirements.

The optical layer is used to form optical connections between the given set
of nodes. Above the optical layer the higher layers will support the required
connectivity. The static traffic case is quite reasonable an assumption for the
backbone networks, where new connections arrive very rarely. The static rout-
ing and wavelength assignment problem (S-RWA) is an NP-complete problem
and only heuristic algorithms are practical.
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Chapter 4

Routing and Wavelength
Assignment Under Dynamic Traffic

4.1 Introduction

In this chapter it is assumed that traffic is not static but lightpath requests ar-
rive randomly following some traffic process. Hence, the routing and wave-
length assignment constitutes a typical decision making problem. When a cer-
tain event occurs, one has to decide on some action. The set of possible actions
is finite: either reject the call or accept it and assign a feasible combination of
route and wavelength (RW) to it. A feasible RW combination is such that along
the route from the source to destination the wavelength is not being used on
any of the links. If no feasible RW combination exists, the call is uncondition-
ally rejected. Furthermore, the accepted connections cannot be interrupted.

As in the previous chapter, we consider wavelength routed networks (WRN).
The network nodes are assumed to be WSXC’s, hence without the capability
to do wavelength conversions.

The dynamic routing and wavelength assignment problem (D-RWA) is studied
mainly in the setting of Markov Decision Processes (MDP). The application of
MDP theory in the context of routing problems is not new. For example, Krish-
nan and others have applied the MDP theory with traditional circuit switched
networks [Kri90, Kri91, ZAA+97, Rum00, Ahl00]. The same problem arises in
the context of WDM networks as with traditional circuit switched networks,
i.e. the astronomical size of the state space makes it impossible to solve the
optimal policy in most cases. Hence, more or less heuristic algorithms are the
only option.

The schemes considered under dynamic traffic can be divided into two cases:
reconfigurable and non-reconfigurable. If it is possible to reconfigure the whole
network when blocking would occur, the blocking probability can be consid-
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erably reduced. Such an operation, however, interrupts all (or at least many)
active lightpaths and requires a lot of coordination between all the nodes. In
large networks the reconfiguration seems infeasible. In any case, the reconfigu-
ration algorithm should try to minimize the number of reconfigured lightpaths
in order to minimize the amount of interruptions in the service [MM99].

The other case occurs when active lightpaths may not be reconfigured. In this
case it is important to decide which route and wavelength are assigned to an
arriving connection request in order to balance the load and minimize the fu-
ture congestion in the network.

In general, one is interested in the optimal policy which maximizes or mini-
mizes the expectation (infinite time horizon) of a given objective function. Here
we assume that the objective is defined in terms of maximizing or minimizing
some revenue or cost function. The cost may represent e.g. the loss of revenue
due to blocked calls, where different revenue may be associated to each type
of call.

Problem 3 (Dynamic Routing and Wavelength Assignment [D-RWA])

• Nodes and links of physical network are given, where each link has cer-
tain number of bidirectional fibres (i.e. fibre pairs)

• Lightpath requests (bidirectional connections) arrive according to some
stochastic model

• Active connections yield revenue, or alternatively the blocked connection
requests generate costs

• Problem: Dynamically control the network (CAC) so that the revenues
are maximized, or alternatively the costs are minimized

Connection requests between a given source destination pair constitute a traffic
class, which is indexed by k, k ∈ K, where K is the set of all source destination
pairs. When the arrival process of class-k calls is a Poisson process with in-
tensity λk, the holding times of those calls are distributed exponentially with
mean 1/µk, and the revenue rate per active class-k connection is wk, then the
system constitutes a Markov Process and the problem of determining the opti-
mal policy belongs to the class of Markov Decision Processes (MDP) described
e.g. in [Tij94] and [Dzi97]. Appendix C contains a brief introduction to the
subject.

A policy, usually denoted with α, defines for each possible state of the system
and for each traffic class k of an arriving call which of the possible actions is
taken. Usually the RWA algorithm configures lightpaths in the network unless
there are not enough resources available and the request is blocked, i.e. uncon-
ditionally accepts requests whenever possible. This is, however, not always
the optimal policy.
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Three main approaches for solving the optimal policy in the MDP setting are
the policy iteration, value iteration and linear programming approach [Tij94,
Tah92]. In Section 4.2 the policy iteration is applied to obtain the optimal policy
to a simple case with three network nodes. The reason for the small size of the
example network is the prohibitive size of the state space for any more realistic
network sizes, which would make it impossible to solve exactly the optimal
policy.

Many heuristic policies have been proposed in the literature such as the first-fit
wavelength and most-used wavelength policies combined with shortest path
routing or near shortest path routing, see e.g. in [KA98, MA98, RS95]. Some
of them work reasonably well. In [SB97] a wavelength assignment algorithm
for a fixed routing is presented. Common to all these heuristic policies is that
they are rather simple. The choice of the action to be taken at each decision
epoch can usually be described in simple terms and does not require much
computation. These algorithms, however, do not take into account the traf-
fic characteristics like unequal costs of different requests or inhomogeneous
arrival rates. In Section 4.3 some of the heuristic algorithms are described.

Section 4.4 contains a brief survey of approximate methods to estimate the
blocking probability of given WDM network.

In Section 4.5, we concentrate again on the policy iteration, where, as the name
says, one tries to find the optimal policy by starting from some policy and it-
eratively improving it (see e.g. [Tij94, Dzi97]). The policy iteration is known
to converge rather quickly to the optimal policy. Even the first iteration often
yields a policy which is rather close to the optimal one. In practice, it is seldom
possible to go beyond the first iteration1. Also in this work, we will restrict
ourselves to the first policy iteration. In order to avoid dealing with the huge
size of the state space in calculating the relative state costs needed in the policy
improvement step, we suggest to estimate these costs on the fly by simulations
for the limited set of states that are relevant at any given decision epoch, i.e.
when the route and wavelength assignment for an arriving call has to be made.
The first policy iteration approach in the context of WDM-networks was intro-
duced in [HV00a] and then studied in more detail in [HV00b].

4.2 Exact Calculation of the Optimal Policy

In this section we shall show how the optimal call admission policy can be cal-
culated for an arbitrary network. The simple network in Fig. 4.1(a) is used to
demonstrate the steps in the calculation and the prohibitive size of the general
problem. The links in the network are assumed to be bidirectional single fibre
links. The lightpath requests are as well bidirectional, an assumption made in

1An exception is the case where we have the perfect information about the future presented
in Section 4.7

31



4. ROUTING AND WAVELENGTH ASSIGNMENT UNDER DYNAMIC TRAFFIC

later sections as well. We assume the wavelength continuity constraint here,
i.e. there is no wavelength conversion capability in the network nodes. In the
example network each connection between any node pair can be routed in ex-
actly two ways, directly or via the third node. We refer to these routes as the
primary (P) and the secondary (S) route. As will be seen later, these calcula-
tions, however, are not feasible even for a moderate size network, not to speak
about a large network.

CB
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=⇒ ACBC
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AB
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S S

AC AB
S P
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Figure 4.1: A simple three node network (a) and possible routes between the nodes
(b). Routes are neighbours if they cannot be active at the same time.

The graph in Fig. 4.1(b) represents the relations between possible routes. The
routes are set as neighbours (connected by an edge) if they share a common
link. Each time a new connection is configured into the network essentially
one node is taken in use (coloured). The purpose of the connection graph is to
define the allowed configurations. Connections having an edge between them
in connection graph may not be set up concurrently because that would cause
a wavelength conflict (DCA constraint, see Def. 3.1). Thus, a configuration is
feasible if and only if the active connections form an independent set2 of (multi
layer) graph of Fig. 4.1(b).

Each wavelength constitutes an identical layer in Fig. 4.1(a). As the wave-
length conversion is not allowed in any node, the lightpath must travel using
only one layer. In case of a WIXC node connections could jump from one layer
to another in those nodes. The lack of wavelength conversion means also that
the route neighbour graph (Fig. 4.1(b)) becomes a multiple layer graph with
no edges between the layers as depicted in Fig. 4.2 for the two wavelength lay-
ers case. As subgraphs consisting of one wavelength layer are identical, it is
enough to consider one layer and then generalize the results.

As an example connection graph see Fig. 4.2. As stated before, denote with K
the set of traffic classes, i.e. in the example case simply K = {AB, AC, BC}.
A traffic class consists of bidirectional connections between the given nodes.
Each traffic class has a unique arrival rate λk, a unique service rate µk and a
unique revenue rate wk per time unit. The model can be generalized to include
several traffic classes between the same pair of nodes having different char-
acteristics like higher revenue per time unit. Assuming the arrival process to

2An independent set is set of vertices which have no edge between them.
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Figure 4.2: Connection graph with two wavelength layers (W = 2). The layers have
no edges between them (the vertical red edges in the figure represent that the nodes
use the same route but different wavelength, and can be in use at the same time).

be Poisson and service times to obey the exponential distribution the dynamic
routing and wavelength assignment constitutes a traditional Markov Decision
Process (MDP), which is briefly presented in Appendix C.

4.2.1 Obtaining the Set of Possible States S

Assume we are given a labelled graph G, which defines the possible routes in
the network. Denote the set of vertices (or nodes) by V . Thus, each vertex v
has three attributes, which define (a) the traffic class k, k ∈ K, (b) the route
and (c) the wavelength, i.e. if vertex v is active, then a class-k connection is
configured to network using certain route and certain wavelength. In case of
no wavelength conversion the connection graph G consists of W identical and
independent layers of G0, i.e.

G = G0 ⊕ G0 ⊕ . . .⊕ G0.

As stated before, the connections must be configured to the network so that
no wavelength is used more than once in any single link in order to avoid
the wavelength conflicts. This means that the set of possible states in which
the network can be, consists of those subsets of graph G vertices which have
no edges between them, i.e. which form an independent set. In case of no
wavelength conversion this is equivalent to finding all the independent sets of
graph G0 and taking all the possible W combinations of them, i.e.

S = S0 × S0 × . . .× S0 = SW
0 ,

where S0 is the set of independent sets of graph G0, S is the set of indepen-
dent sets of graph G and W is the number of wavelengths available. Once
the independent sets S0 of graph G0 are obtained, it is straightforward to form
all the possible combinations and renumber the states. Hence, the size of the
state space can easily be very large leading to infeasible calculations, as will

33



4. ROUTING AND WAVELENGTH ASSIGNMENT UNDER DYNAMIC TRAFFIC

be shown in the following paragraphs. In Section 4.2.4 a method to reduce the
size of the state space with the aid of the symmetry of the wavelength layer
will be presented.

We get an equivalent formulation if we consider the complement graph Ḡ of
graph G. In a complement graph the set of vertices is the same, but there is an
edge between nodes u and v if and only if there is no such edge in the original
graph. Then a feasible configuration is characterized by the fact that the routes
in use (=vertices of graph) must form a clique, i.e. each pair of vertices has an
edge between them. Hence, the state space of active connections is equivalent
to the set of all cliques of graph Ḡ.

Well-known algorithms for generating all the cliques/independent sets of an
arbitrary graph exist (see e.g. [KS99, Öst99, AJ83]). The problem itself is NP-
complete and thus intractable for other but small graphs (see Appendix B.3).

In the example graph G0 of Fig. 4.1 the set of independent sets S0 is

S0 = { ∅,
{ 1 }, { 2 }, { 3 }, { 4 }, { 5 }, { 6 },
{ 1, 4 }, { 1, 6 }, { 4, 6 }, { 1, 5 }, { 2, 6 }, { 3, 4 }
{ 1, 4, 6 } }

There are in total 14 possible states for each wavelength. Hence, the total num-
ber of states in the example network is 14W . For W = 4 this gives 38416 states,
which means that the transition probability matrix Q has about 1.5 ·109 entries.
Assuming 32 bit floating point arithmetic, storing the matrix Q requires about
6 Gbytes of memory.

4.2.2 Routing and Wavelength Assignment Policy

The policy α defines the route and wavelength for an incoming connection
request based on the current state of the network. Formally

α : S × K → S,

with the following constraint

α(i, k) = i ∨ α(i, k) = i ∪ {v}where L(v) = k.

The first case represents blocking, i.e. the state of the network does not change.
In the other case the incoming call is accepted. The function L is a (label)
mapping from the set of vertices V to traffic classes K:

L : G → K,

i.e. it returns the traffic class associated with the given node. The constraint
accounts for that the added lightpath v fulfills the class-k request. Denote the
set of possible new states when a class-k arrival occurs in state i withAi,k. Then
it holds that α(i, k) ∈ Ai,k.
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4.2.3 Transition Probability Matrix Q and Revenue Rates

The goal of stochastic optimization is to maximize the expected revenue (or
equivalently to minimize the expected costs). For this, we need to define the
revenue rate for each state of the system (or equivalently revenues could be
associated pointwise with transitions). Assume that in each state i the system
accrues revenues in certain fixed rate ri. So during a certain period of time T
spent in state i the total revenues would be ri · T .

Once the policy α is fixed the transition probability matrix Q(α) can be written
down. After the steady-state probabilities π(α) of the system, defined by Q(α),
are solved the average revenue rate of the system can be obtained,

r(α) =
∑
i∈S

ri(α)πi(α),

where ri(α) is the revenue rate in state i under policy α. The optimal policy α
is the policy which maximizes the average revenue rate r(α).

Assume that each active connection generates incomes at a constant rate wk

which depends on the traffic class k. Then it is clear that the revenue rate in
state i is independent of the used policy α as the policy only determines call
admission, i.e. no matter what policy is used the revenue rate in state i depends
only on the currently active connections. Thus, the revenue rate in state i is the
sum of active connections weighted with the appropriate traffic class weighs,

ri =
∑
v∈i

wL(v), (4.1)

where wk defines the revenue per time unit accrued by a class-k connection in
progress.

Another equivalent way to phrase the revenue rates is to look at the expected
loss of revenue due to the missed requests, i.e.

ri(α) =
∑

k∈K,α(i,k)=i

−βk · λk, (4.2)

where βk = wk/µk is the expected total revenue per a carried class-k connec-
tion3. The negative revenue rate corresponds to the fact that we are actually
looking at the cost rates instead of revenue.

These two forms for the revenue rate have the following relation. For each
traffic class k ∈ K it holds that,

Bk(α)λkβk︸ ︷︷ ︸
cost rate

+ Nk(α)wk︸ ︷︷ ︸
income rate

= λkβk,︸ ︷︷ ︸
offered income rate

3Then, however, the cost from the blocked call is not included in the relative costs vi used
in Howard’s equations, and must be taken into account explicitly when policy iteration is
applied.
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Listing 4.1: A Matlab function to calculate Q� and r.

function [Qmu, r ] = generate Qmu and r (S , L ,mu,w ) ;
%
% C a l c u l a t e Qmu and r . Qmu has a l l ( c o n s t a n t ) d e p a r t u r e r a t e s
% and r l i k e w i s e c o n s t a n t r e v e n u e r a t e s from e a c h s t a t e .
%
% S i s a NS∗NZ matr ix , where NS i s number o f s t a t e s and NZ maximum
% number o f members in a s t a t e ( s e t ) . S t a t e i s ( v1 , v2 , . . , vx ) i . e .
% a s e t o f nodes in graph G.
% L i s mapping from G t o K , where K i s t r a f f i c c l a s s e s .
% mu and w a r e K�v e c t o r s c o n t a i n i n g d e p a r t u r e and r e v e n u e r a t e s .

NS = size ( S , 1 ) ;
Qmu = zeros ( NS , NS ) ;
r = zeros ( NS , 1 ) ;

fo r s1 =1:NS;
s = S{s1 } ;
fo r ss =1: length ( s ) ;

v=s ( ss ) ; % a c t i v e node ?
i f v > 0 % an a c t i v e c a l l

k = L ( v ) ; % t r a f f i c c l a s s
ns = setxor ( s , v ) ; % new s t a t e a f t e r d e p a r t u r e
s2 = g e t s t a t e ( S , ns ) ;
Qmu( s1 , s2 ) = Qmu( s1 , s2 ) + mu( k ) ;
r ( s1 ) = r ( s1 ) + w( k ) ;

end ;
end ;

end ;

where Bk(α) is the blocking probability of the class-k connection and Nk(α) is
the average number of active class-k connections when the used policy is α.
The formula is a direct consequence of Little’s result N = λT . By taking a sum
over all the traffic classes the total income rate r(α), the total cost rate c(α) and
the total offered income rate can be obtained. Hence,

r(α) + c(α) =
∑

k

λkβk = constant,

and
arg max

α

r(α) = arg min
α

c(α).

The departures from the system are independent of the used policy. But tran-
sitions due arrivals are policy dependent. Thus, the transition intensity matrix
Q(α) can be decomposed into two parts,

Q(α) = Qµ + Qλ(α), (4.3)

where matrix Qµ is policy independent part containing the departures and
matrix Qλ(α) contains the arrivals and depends on the used policy. This de-
composition is useful when the transition probability matrix Q(α) is needed to
obtain consequently to new policies, as is the case with the policy iteration.

Listing 4.1 contains a Matlab function which obtains the policy independent
parts, i.e. the departure rates defined in the matrix Qµ and the revenue rate
vector r. The revenue rates are written according to definition (4.1) so that r
does not depend on the chosen policy α. Thus, the revenue vector r contains
simply the sum of income rates of the active connections in each state.
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Listing 4.2: A Matlab function to calculate Q for any fixed policy α.
function Q=generate Q ( Qmu, lambda , alpha ) ;

Q = Qmu; % c o n s t a n t d e p a r t u r e r a t e s
Snum = size ( Qmu , 1 ) ;
Knum = length ( lambda ) ;

fo r s = 1 :Snum ; % Snum p o s s i b l e s t a t e s
fo r k = 1 :Knum ; % Knum t r a f f i c c l a s s e s

ss = alpha ( k , s ) ; % new s t a t e
i f ss ˜ = s % c a l l a c c e p t e d

Q( s , ss ) = Q( s , ss ) + lambda ( k ) ;
end ;

end ;
Q( s , s ) = 0 ;
Q( s , s ) = �sum ( Q( s , : ) ) ;

end ;

The Matlab function presented in Listing 4.2 then produces the transition rate
matrix Q(α) for given policy α by adding the policy dependent arrival rates
to Qµ according to equation (4.3). Basically, the algorithm goes through ev-
ery possible state and arrival, and updates the matrix Q(α) accordingly. Then
the algorithm updates the entries on the diagonal so that the row sums of the
matrix Q(α) are equal to zero (as required by definition of Q, see C.2).

Continuous Time Howard’s equations

Now, instead of solving the steady-state probabilities for each possible policy
α and maximizing r(α) with respect to α, a better way exists to find the op-
timal policy, namely using the continuous time Howard’s equations and ap-
plying the policy iteration (see Appendix C.5). By solving the continuous time
Howard’s equations

ri(α)− r(α) +
∑
j 6=i

qij(α) · (vj(α)− vi(α)) = 0, ∀ i ∈ S,

we get the so called relative values of states i, vi(α), and the average revenue
rate r(α), under policy α. Because qii = −∑j 6=i qij for all i, Howard’s equations
can also be written as

ri(α)− r(α) +
∑

j

qij(α) · vj(α) = 0, ∀ i ∈ S.

One of the relative values can be given an arbitrary value, e.g. we can set
v0(α) = 0. Then the set of linear equations can be written in the familiar form,


1 −q1,2 −q1,3 . . . −q1,n

1 −q2,2 −q2,3 . . . −q2,n
... . . . ...
1 −qn,2 −qn,3 . . . −qn,n


 ·




r
v2
...

vn


 =




r1

r2
...
rn


 ,

which is an equation of the form Ax = b, where x is an unknown vector. It
has the formal solution

x = A−1b,
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but the inverse of a huge matrix is infeasible to calculate. If n × n matrix A is
sparse and moderate size then the equation can be solved using, for example,
some numerical package.

Policy Iteration Step

The possible decisions in state i when a class k arrival occurs are

a) configure the connection into the network using a feasible RW pair, or

b) reject it.

The state of the system defines the active connections (and how they are con-
figured), and as stated before, the set Ai,k contains all the possible states the
system can be immediately after the decision for a class-k arrival in state i is
made. The state after the decision can be a new state (transition) or the same
state in the case the connection request is blocked. Furthermore, this post deci-
sion state defines the decision made uniquely, i.e. policy α defines a new state
j, j ∈ Ai,k, for each i ∈ S and k ∈ K.

Once the relative values vi and average revenue rate r are obtained for the cur-
rent policy α, the policy iteration technique is applied to improve the current
policy (see Appendix C.6). Assume that the objective function describes the
revenue rates in each state, i.e. we want to maximize the average revenue rate.
Recall, that the relative value vi defines the expected future revenues when the
system starts from state i using the given policy α.

j
2

j
1

r

r

i

Figure 4.3: Two possible decisions depicted. Decision j1 corresponds to a case where
incoming call is accepted while in j2 it is rejected (revenue rate is lower at t = 0).

In this case the rejection itself costs immediately nothing but accepting a con-
nection gives no immediate revenue either. Hence, there is no revenues in-
volved immediately to the decision, but the revenue (or loss of it) is included
in the future evolution of the system, i.e. it is included in the relative values vi.

It makes sense to choose such a post arrival state that has highest expected
(relative) revenues among all possible states Ai,k. Thus, the policy iteration
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formula simply becomes,

α′(i, k) = arg max
j∈Ai,k

{vj(α)} , ∀ i, k.

The equation defines the action to be taken in each state i for any possible
arrival k, i.e. a new policy α′, which can be shown to be never worse than the
original policy α [Tij94]. The new policy α′ defines a new transition rate matrix
Q, and the policy iteration step can then be carried out for it in turn. This is
repeated until the optimal policy is obtained, i.e. the average revenue rate r(α)
does not improve further.

Policy Iteration with Lost Calls

If we concentrate on the lost calls, the formulation becomes a little bit different.
Instead of maximizing the revenue rate, consider minimizing the average cost
rate. Similarly, as defined in (4.2), the cost rate in state i is

ri(α) =
∑

k:α(i,k)=i

λk · βk,

i.e. the sum of the arrival rates of the traffic classes which are blocked in given
state multiplied with appropriate average loss of revenues βk per call.

Also the effect of blocking a connection request in policy iteration must be
taken into account explicitly, as it is no longer included in the relative values vi

(the less active connections there are initially, the less blockings will occur on
average!). Hence, the policy iteration step becomes

α′(i, k) = arg min
j∈Ai,k

{1i=j · βk + vj(α)} , ∀ i, k. (4.4)

In the above equation the cost from blocking the current connection request,
i.e. if j = i, is explicitly added as it is not included in the relative costs vj

4.2.4 Wavelength Degeneration

In this section a method to reduce the size of the state space S is presented.
Because the wavelength layers are identical, the optimal policy should also ex-
hibit the same symmetry. Hence, exchanging wavelengths λ1 and λ2 should
have no effect on the optimal policy. Remember that the state space S is actu-
ally a Cartesian product of W layers. Thus, states s1 and s2 can be considered
equivalent iff

∃wavelength permutation π : SW
0 → SW

0 such that π(s1) = s2,

where S0 is the independent set of one layer (SW
0 = S) and π is some permuta-

tion which exchanges the order of the wavelength layers.
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Figure 4.4: The number of ways to colour n balls with m colours. There are n+m−1
slots and marking m − 1 slots divides the rest n slots to m groups.

Next we will determine the number of possible states when the symmetrical
states are removed. Assume that there are N states in each layer, i.e. N = ||S0||.
The states can be enumerated with numbers from 1 to N .

Depict the wavelength layers as “balls” and the state of each layer as a “colour”
of the ball. Then an equivalent formulation is to find out the number of ways
to assign colours to W identical balls from the set of N colours without any re-
striction to how many times each colour should be used. Note that the balls are
not numbered and only the number of balls having the same colour matters.

Colouring n identical balls with m colours

In this section a classical combinatorial formula is briefly studied. Assume n
identical balls (order of balls does not matter) is to be given a colour using m
different colours. Let X(n, m) be the number of combinations to colour n iden-
tical balls with m colours, where n ≥ m, so that each colour is given to at least
one ball. Similarly, let Y (n, m) be the number of combinations to colour the
balls without the requirement to use each colour at least once. This is equiv-
alent to the Bose-Einstein statistics used in physics, where the particles of the
system are assumed to be unidentifiable. The balls are the particles and the
colour of the ball corresponds to the energy state of the particle etc.

Consider that there are n + m balls and m colours. Then after each colour is
given to one ball there are still n balls left. Thus it holds that

Y (n, m) = X(n + m, m) ∀ n, m ≥ 1.

Clearly, if there is only one colour available, i.e. m = 1, the balls can be coloured
only in one way, and hence X(n, 1) = Y (n, 1) = 1. Similarly, if the number of
colours is equal to the number of balls, i.e. m = n, then only one possible
colour assignment using all the colours exists, i.e. X(n, n) = 1 for all n ≥ 1.
Furthermore it is easy to see that e.g. X(n, 2) = n− 1.

The general formula for Y (n, m) can be easily obtained. Consider placing n +
m − 1 slots in a row (see Fig. 4.4). By marking m − 1 of them the rest n slots
(=balls) are partioned to m (possibly empty) sets where the first set represents
the balls given the 1st colour etc. Hence there is a one-to-one relation between
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the different colourings of n balls and markings of m− 1 slots, i.e. the number
of colourings is equal to the number of ways to choose the slots. The marked
slots can be chosen in

(
n+m−1

m−1

)
different ways, and thus

Y (n, m) =

(
n + m− 1

m− 1

)
=

(
n + m− 1

n

)
, where n, m ≥ 1. (4.5)

From above it also follows that

X(n, m) = Y (n−m, m) =

(
n− 1

n−m

)
, where n ≥ m.

Also the following recursive equation4 holds for X(n, m):

X(n, m) =

min{m,n−m}∑
i=1

(
m

i

)
·X(n−m, i),

or alternatively

X(n + m, m) =

min{m,n}∑
i=1

(
m

i

)
·X(n, i).

Number of States in the Reduced State Space

As was explained before the total number of states in the reduced state space
is equal to the number of ways to assign colours to W balls using N colours
without any restriction to how many times each colour should be used. Ap-
plying the formula (4.5) gives that the total number of states after removal of
the degenerated states is

||Sd|| = Y (W, N) =

(
N + W − 1

W

)
. (4.6)

While this reduces the size of the state space quite a lot, from NW to
(

N+W−1
W

)
,

the general problem remains still intractable.

For the simple example network of Fig. 4.1 with N = 14 and W = 4, the for-
mula gives ||Sd|| = 2380, while the number of states before removal of equiva-
lent states was 38416.

4.2.5 Relationship between S and Sd

Let s =
(
s1 s2 . . . sW

)
be a state in the original state space S. Then define

that s belongs to Sd iff s1 ≥ s2 ≥ . . . ≥ sW . That is the states included in the
4each i includes the cases where i colours are used more than once.
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S Sd

Figure 4.5: The original and degenerated state space.

reduced state space are those whose elements in vector representation are in
decreasing order. It is trivial to find the mapping from S to Sd by sorting the
vector in decreasing order (sorting a vector is equal to taking certain permuta-
tion).

In the reduced state space there is one element representing each equivalence
class. Denote by {πs}s∈S the family of permutations which exchange the order
of wavelength layers so that

∀ s ∈ S : πs(s) ∈ Sd.

The permutation πs is a bijection and thus has a trivial inverse function π−1
s

which exchanges the wavelengths back to the original order. Furthermore, for
all s ∈ Sd, it holds that πs(s) = s. Let f be a surjective mapping from S to Sd

defined by the permutations above:

f : S → Sd, f(s) = πs(s).

Hence,
Sd = {sd : ∃ s ∈ S, f(s) = sd},

or in other words,
Sd = {s : f(s) = s}.

The policy α(d) in Sd is feasible if there exists a policy α in S for which it holds

α(d) = f ◦ α.

Denote by As,k ⊂ S the set of possible new states when class-k arrival occurs
in state s ∈ S. Similarly, A(d)

sd,k ⊂ Sd is the set of possible new states for sd ∈
Sd. Note that the policy essentially chooses one state from each Asd,k or A(d)

sd,k.
Generally, the policy α defines a transition rate matrix Q and a revenue rate
vector r. The reduction of the state space also gives us new Qd and rd in a
natural way. Note that the revenue rate from a connection does not depend
on the used wavelength (or even on the route). Thus, the states where the
wavelengths are just in different order will have the same revenue rates.

Once the setsA(d)
sd,k are found for all k and sd, the policy iteration can be used to

obtain the optimal policy in Sd. Then the optimal, but not necessarily unique,
policy in S is the one for which

f(α(s, k)) = α(d)(f(s), k).

42



4.2. EXACT CALCULATION OF THE OPTIMAL POLICY

Generally, for an arbitrary state s ∈ S and a connection request k ∈ K, the
optimal policy is

1. if s ∈ Sd, then α(s, k) = α(d)(s, k),

2. if s /∈ Sd, then α(s, k) = π−1
s (α(d)(πs(s), k),

which is well-defined as πs(x) is a bijection.5

The whole procedure to obtain the optimal policy is presented in Algorithm 2.

Algorithm 2 Optimal policy algorithm
Enumerate possible routes for each traffic class
Determine graph G which holds dependencies between routes, i.e. whether
they share a link or not
Determine the state space S, i.e. independent sets of graph G
Form the reduced state space Sd

Form the initial policy α
(d)
0 : Sd ×K → Sd

repeat
Use policy iteration step to find a better policy α

(d)
i+1

until no improvement on average revenue rate
Form the optimal policy α from α(d) (optimal policy in reduced state)

4.2.6 Worst Case Scenario

In the worst case scenario the graph G0 has no edges. Assuming there are V
nodes in it, this gives in total 2V possible independent sets, i.e. states in which
the system can be. Let there be K traffic classes, each having R alternative
routes with W possible wavelengths, and assume that there are no wavelength
conflicts. Then we get

||S0|| = 2KR,

where S0 is the independent set of one layer of graph G. Hence, the state space
of any moderate size network is likely to be prohibitively large. Moreover, enu-
meration of all independent sets of graph G0 is not always possible in practice,
as the maximum independent set problem is a well-known NP-complete prob-
lem and by enumerating all the independent sets we also find the maximum
independent set.

By combining the wavelength degeneration analysis (formula (4.6)) and the
worst case scenario for the state space, the size of the state space in worst case
becomes

||Sd|| = N · (N − 1) · . . . · (N + W − 1)

W !
, where N = 2KR.

5Actually the mapping α(s, k) = π−1
s (α(d)(πs(s), k) would be enough as πs(s) = s when

s ∈ Sd.
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Figure 4.6: The evolution of the average cost rate r as a function of iteration rounds.
The startup policy was “reject-all”. Already after first two iteration rounds the policy is
almost optimal.

The size of the state space grows extremely fast!

4.2.7 Triangle Network Example

In this section the optimal policy is calculated for the example network of Fig.
4.1 with one and two wavelength layers (W = 1, 2). The used traffic parame-
ters are presented in Table 4.1. The parameter x defines the weight of class AB
connections and it is varied between 0.0− 5.0 in order to see the critical points
where the optimal policy changes. Clearly, when x = 0 the traffic between
nodes A and B is considered worthless and should be rejected always. Like-
wise, when x becomes large enough the traffic class AB should be the only one
accepted (as it uses every link in the system). As the network is symmetric and
the traffic classes are homogeneous when x = 1 the optimal policy should be
equal to all the traffic classes at that point and the blocking probability curves
are equal at point x = 1 and possibly in its neighbourhood.

λ µ w
AB 1.0 1.0 x
AC 1.0 1.0 1.0
BC 1.0 1.0 1.0

Table 4.1: Traffic parameters for each class.

In Fig. 4.6 the evolution of the policy iteration is illustrated. The x-axis repre-
sents the iteration round and in the y-axis is the average revenue rate. In this
figure the number of wavelength layers is W = 2 and the weight factor x = 5.
The algorithm finds the optimal policy in 5 iteration rounds starting from the
worst possible policy, i.e. rejecting every connection request. In the next step
most of the connection requests are accepted, and after the first two rounds the
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Figure 4.7: The evolution of the blocking probability and the average revenue rate
with the optimal policy compared with a simple fixed policy. The network has one
wavelength layer (W = 1).

average revenue rate is almost equal with the optimal policy. The initial policy
for the policy iteration is the worst possible, and any greedy RWA policy (see
Section 4.3) is likely to give near optimal policy with one iteration round. This
kind of behaviour where the solution converges near the optimal in a few steps
is very advantageous for the first policy iteration to be presented in Section 4.5.
Typically the number of iteration rounds needed with W = 1, 2 is from 5 to 10
rounds with these parameters and this network.

One Wavelength Layer

In Fig. 4.7 the optimal policy is illustrated with one wavelength layer (W = 1).
The straight dashed lines in both the blocking and the average revenue rate fig-
ures represent the results with a fixed first-fit algorithm (see Section 4.3). The
weight factor of class AB connection varies between 0 and 5. When x = 0 the
class AB is worthless and should never be accepted, which indeed is the case
(curve starting from (0, 1)). The average revenue rate increases approximately
linearly with x. Every time the blocking probabilities change the optimal pol-
icy α changes too. After about 1.0 the optimal policy remains the same up to
around 3.1. It is clear that with high enough x the optimal policy will be a pol-
icy which accepts only class AB connections. But with x = 5 still about 30% of
the lower value AC and BC connections are accepted.

Two Wavelength Layers

In Fig. 4.8 the number of wavelength layers is two (W = 2), but otherwise the
situation is the same as before. As the capacity of the network is increased the
blocking probabilities of each traffic class will decrease and the average rev-
enue rate will increase. It can be noticed that the area where all traffic classes
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Figure 4.8: The evolution of the blocking probability and the average revenue rate
with the optimal policy compared with a simple fixed policy. The network has two
wavelength layers (W = 2).
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Figure 4.9: The improvement over the simple first-fit policy in one and two wavelength
layers.

become equal policy wise has become wider around the point x = 1. This is an
expected result since the capacity of the network has doubled and blockings
have become more rare, so it makes sense to accept more connections. Also in
the two wavelength layer case the optimal policy gives always a higher aver-
age revenue rate than the simple first-fit policy.

Comparing the average revenue rates with W = 1 and W = 2 we notice that
the proportional improvement over the fixed first-fit policy is smaller with the
two wavelength layers case. This can be also seen from Fig. 4.9 where the
improvement over the simple first-fit algorithm is depicted as a function of
class AB weight x. This suggests that with the smaller blocking probabilities
and (near) homogeneous traffic the simple first-fit policy works quite well.
Asymptotically both curves converge to a constant value because the optimal
policy converges to one which rejects all other traffic classes except AB. In
the limit the optimal policy has average revenue rate (1 − BAB) · x, while the
simple first-fit policy has the average revenue rate (1−B′)·x (the blocking is the
same for every traffic class). Hence, the proportional improvement converges
to (B′ −BAB)/B′.
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4.3 Heuristic Algorithms

Several quick heuristic algorithms for the dynamic RWA problem have been
proposed in the literature. Here we briefly present some of them and later in
Chapter 5 study how the first iteration approach works with them. The first
set of algorithms assumes that a fixed set of possible routes for each connection
is given in advance. Some papers refer to this as an alternate routing strategy.
In practice the set of routes usually consists of the shortest or nearly shortest
paths. These algorithms are greedy and accept the first feasible RW pair they
find (first-fit).

• basic algorithm goes through all the routes in a fixed order and for each
route tries all the wavelengths in a fixed order. The routes are sorted in
the shortest route first order. The new connection is routed on the first
path on which a wavelength channel is available. Among the available
wavelength channels the first feasible channel is selected (see e.g. [KA96,
RS95]).

• porder algorithm is similar to basic-algorithm, but it goes through all the
wavelengths in a fixed order and for each wavelength tries all the routes
in a fixed order.

• pcolor algorithm works like porder, but wavelengths are searched in the
order of their current usage instead of a fixed order, so that the most used
wavelength is tried first.

• lpcolor algorithm is the “smartest” algorithm. It packs colours, but the
primary target is to minimize the number of used links. The algorithm
first tries the most used wavelength with all the shortest routes, then
the next often used wavelength and so on. If no wavelength works, the
set of routes is expanded to include routes having one link more and
wavelengths are tried again in the same order.

The above heuristics in slightly different forms are presented e.g. in [MA98,
SB97, KA98].

Another set of heuristic algorithms, adaptive unconstrained routing (AUR) al-
gorithms, are described in [MA98]. These algorithms search a route based on
the current state of the network (dynamic routing) instead of relying on a fixed
set of routes, and are thus a little bit slower.

• aurpack is similar to pcolor, but without the limitations of a fixed set of
routes, i.e. routes of any length are acceptable.

• aurexhaustive finds a shortest route for each wavelength (if possible) and
chooses the shortest RW pair among them, i.e. it is identical to lpcolor
except that the set of routes is not fixed.
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Thus AUR-algorithms will search for a free route dynamically based on the
current state of the network. There is no need to store possible routes (which
without any limitations can form a very large set) in advance.

Also other heuristics are given in [MA98], e.g. random (tries wavelengths in
random order) and spread (tries least used wavelength first), but they were
reported to work worse than the ones described above, and are not further
discussed here.

4.4 Approximative Numerical Methods

As has been shown in Section 4.2, solving D-RWA problem exactly is not pos-
sible for any practical size mesh network. Hence, the blocking probabilities of
connection requests can only be approximated. This can be done by running
simulations and evaluating the blocking probability from them, or by using
some approximate models of the system which then can be solved exactly or
numerically. In this section a brief introduction is given on the latter approach.

A simple model, presented in [BH96, SB99], assumes mutual independence be-
tween all the links and all the wavelengths. Furthermore a fixed routing is
assumed, i.e. one route is fixed for every source-destination pair (instead of al-
ternate routing), and that the blocking probability is equal in all the links and
wavelengths. Let ρ be the probability that a wavelength is in use on a link.

Then in the case of no wavelength translation (WSXC) the probability that a
connection request is blocked becomes

Pb =
(
1− (1− ρ)H

)W
, (4.7)

where H is the number of links in the route and W is the number of wave-
lengths available. The formula can be explained in the following way. First,
(1 − ρ)H is probability that a route of length H is free on a fixed wavelength.
Thus, 1− (1− ρ)H is the probability of its complement. As the wavelength lay-
ers were assumed to behave identically and independently, it follows that the
probability that none of the wavelength layers has a free route is (1−(1−ρ)H)W .

Similarly, in the case of WIXC, i.e. when wavelength translation is possible in
every node, the blocking probability of a connection request is

Pb = 1− (1− ρW
)H

. (4.8)

In this case ρW is the probability that no wavelength channel is free on some
link. Links behave identically and independently, and thus (1 − ρW )H is the
probability that there is one free wavelength channel available in every link
along H link long route. Hence, 1 − (1 − ρW )H is the probability that at least
one of the links is full and connection request is blocked.
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The assumption of the independence is valid when the network is dense and
the number of wavelength channels is high. Then every link has many active
connections which meet only in one link. More accurate models for estimating
the blocking probabilities are presented e.g. in [RRP99,ZRP98a,ZRP98b,Bir96,
SB97].

4.5 First Policy Iteration

In Section 4.2 the D-RWA problem was handled in the context of MDP theory.
First Howard’s equations were solved for the current policy and then a method
called policy iteration was used to obtain a better policy α′. This was repeated
until the optimal policy was obtained and the average revenue rate no longer
improved.

As observed in Section 4.2.1 the size of the state space of any realistic size
network is astronomical, and though Howard’s equations are just a set of linear
equations for relative costs vi and the average cost rate r(α) of the standard
policy, their solution cannot be obtained. Hence, it is practically impossible to
determine the optimal policy for any realistic size network and other solutions
must be sought.

In Section 4.3 several heuristic algorithms were presented. A deficiency in all
the presented heuristic algorithms is that they do not take into account the pos-
sible additional information about the arrival rates, the distribution of holding
times, or the priorities of traffic classes (different costs/revenues). Also the
duration of the call when it arrives could be known (for example one channel
is reserved for a certain event which lasts exactly two days), which conflicts
slightly with the original assumptions about the traffic process (memoryless
property). We could of course try to come up with better heuristics which
somehow take into account the additional information, but that means that we
would need a new heuristic policy for each new case.

The algorithm presented in this section still relies on the MDP theory. We take
one of the heuristic policies presented in Section 4.3 as a starting point and call
it the standard policy. Then the first round of the policy iteration is taken to
make the actual decision. The policy resulting from the first policy iteration is
referred to as the iteration policy. As stated before, it is not possible to solve all
the relative values vi due to the prohibitive size of the state space. However,
at any decision epoch the relative values vi are needed only for the small set
of states Ai,k reachable from the current state (linear function of the number
of traffic classes) when class-k arrival has occurred. In [HV00a] we propose to
estimate these values on the fly by means of simulations.

Briefly, our idea in the first policy iteration is the following: at each decision
epoch we make a decision analysis of all the alternative actions. For each of
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the possible actions, i.e. decision alternatives, we estimate the future costs by
simulation. Thus, assuming that a given action is taken we let the system pro-
ceed from the state where it is after that action and use the standard policy
to make all subsequent decisions in the simulation. The iteration policy is the
policy which is obtained when at each decision epoch the action is chosen for
which the estimated cost is the minimum. It can be shown that the iteration
policy is always better or at least as good a policy as the standard policy, and as
said, it often comes rather close to the optimal policy (see Fig. 4.6). The proce-
dure to obtain the iteration policy, i.e. the policy resulting from the first policy
iteration, is presented in Algorithm 3.

By doing the first policy iteration we have two goals in mind. 1) Finding a
better D-RWA algorithm which, being computationally intensive, may or may
not be calculable in real time, depending on the time scale of the dynamics of
the system. 2) Even in the case the algorithm is not calculable in real time, es-
timating how far the performance of a heuristic algorithm is from the optimal
one.

The iteration policy automatically adapts to the new situation, because the sim-
ulation, as explained later, will automatically take into account all the peculiar-
ities of the system. So, even if the first iteration approach is very simple, it is
very powerful due to its flexibility.

4.5.1 Relative Costs of States

In the MDP theory, the first policy iteration consists of the following steps:
With the standard policy one solves the Howard’s equations (see, e.g. [Tij94,
Dzi97]) to obtain the so called relative costs of the states, vi, which for each
possible state i of the system describe the difference in the expected cumulative
cost from time 0 to infinity, given that the system starts from state i rather
than from the equilibrium. Assume that we are considering costs from the
blocked connection requests instead of revenues from accepted connections
(see Section 4.2.3). Then, given that the current state of the system is i and a
class-k call is offered, one calculates the cost βk + vi, where βk = wk/µk, for
the action that the call is rejected, and the cost vj , j ∈ Ai,k and j 6= i, for the
case the call is accepted. The set Ai,k is the set of possible states after decision
when the current state is i and call-k connection is assigned a feasible RW pair
or rejected. By choosing always the action which minimizes the cost, one gets
the iteration policy, i.e. the policy resulting from the first policy iteration.

Given that the system starts from state i at time 0, i.e. X0 = i, and the standard
policy α is applied for all the decisions, the cumulative costs are accrued at the
expected rate ct(i) at time t,

ct(i) = E[rXt|X0 = i] =
∑

k

λkβkP{Xt ∈ Bk|X0 = i}, (4.9)

i.e. the expected rate of lost revenue, where βk is average revenue of carried
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class-k connection and P{Xt ∈ Bk} is the probability that at time t the state
Xt of the system is a blocking state for class-k calls under the standard pol-
icy. When Xt ∈ Bk, class-k calls arriving at time t are blocked by the standard
policy, because either no feasible RW pair exists or the policy otherwise deems
the blocking to be advantageous in the long run. The expected cost rate ct(i)
depends on the initial state i. However, no matter what the initial state is, as
t tends to infinity, the expected cost rate tends to a constant r, which is spe-
cific to the standard policy, and corresponds to (4.9) with steady state blocking
probabilities P{Xt ∈ Bk}.
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Figure 4.10: Expected costs with different initial choices as a function of time.

The behaviour of the function ct(i) is depicted in Fig. 4.10 for two different
initial values i1 and i2. The relative cost vi is defined as the integral

vi =

∫ ∞

0

(ct(i)− r) dt,

i.e. the area between the curve ct(i) and the line at level r. So we are interested
in the transient behaviour of ct(i); after the transient no contribution comes to
integral. The length of the transient is of the order 1/µ, where 1/µ is the max-
imum over {1/µk}, k ∈ K. After this time the system essentially forgets the
information about the initial state. So we can restrict ourselves to an appropri-
ately chosen finite interval (0, T ). The actual choice of T is a tradeoff between
different considerations as will be discussed later.

One easily sees that in the policy improvement step (see C.6) only the differ-
ences of the values vi between different states are important. Therefore, we can
neglect the constant r in the integral, as it is common to all states, and end up
for thus redefined vi,

vi ≈ vi(T ) =

∫ T

0

ct(i) dt, (4.10)

which is simply the expected cumulative cost in interval (0, T ) starting from
the initial state i.
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4.5.2 Estimation of the Relative Costs by Simulation

In practice, it is not feasible to calculate the cost rate function ct(i) analytically
even for the simplest policies. Therefore, we estimate the relative costs vi by
simulations. In each simulation the system is initially set in state i and then the
evolution of the system is followed for the period of length T , making all the
RWA decisions according to the standard policy.

Statistics Collection: Blocking Time vs. Blocking Events

In collecting the statistics one has two alternatives. Either one records the time
intervals when the system is in a blocking state of class-k calls, for all k ∈ K. If
the cumulative time within interval (0, T ) when the system is in the blocking
state of class-k calls is denoted by τk(i), then the integral is simply

v̂i =
∑

λkβkτk(i). (4.11)

Alternatively, one records the number νk(i) of blocked calls of type k in interval
(0, T ). Then we have

v̂i =
∑

βkνk(i). (4.12)

In these equations we have written explicitly τk(i) and νk(i) in order to em-
phasize that the system starts from the state i. Both (4.11) and (4.12) give an
unbiased estimate for vi(T ). In either case, the simulation has to be repeated a
number of times in order to get an estimator with small enough a confidence
interval.

Denote the estimates of future costs obtained in the jth simulation replication
by v̂

(j)
i , using (4.11) or (4.12) as the case may be. Then our final estimator for vi

is

v̂i =
1

N

N∑
j=1

v̂
(j)
i , (4.13)

where N is the number of simulation replications. In fact, for the policy im-
provement the interesting quantity is the difference

Ei1,i2 = vi2 − vi1 ,

for which we have the obvious estimate

Êi1,i2 = v̂i2 − v̂i1 . (4.14)

From the samples v̂
(j)
i1

and v̂
(j)
i2

, j = 1, . . . , N , we can also derive an estimate for
the variance σ̂2

i1,i2
of the estimator Êi1,i2

σ̂2
i1,i2 =

N
∑

j(v̂
(j)
i2
− v̂

(j)
i1

)2 −
(∑

j v̂
(j)
i2
− v̂

(j)
i1

)2

N2(N − 1)
=

Ŝ2
i1,i2
− (Êi1,i2)

2

N − 1
,
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where Ŝ2
i1,i2 = 1

N

∑
j

(
v̂

(j)
i2
− v̂

(j)
i1

)2

.

The choice between the alternative statistics collection methods is based on
technical considerations. Though estimator (4.11) (blocking time) has a lower
variance per one simulation replication, it requires much more bookkeeping
and the variance obtained with a given amount of computational effort may
be lower for estimator (4.12) (blocking events).

Policy Iteration with Uncertain Relative Costs

The important parameters of the simulation are the length of the simulation
period T and the number of simulation replications N used for the estima-
tion of each vi. In practice, we are interested in the smallest possible values of
T and N in order to minimize the simulation time. However, making T and
N too small increases the simulation noise, i.e. error in the estimates v̂i, occa-
sionally leading to decisions that differ from that of the true iteration policy,
consequently deteriorating the performance of the resulting algorithm.

No matter how the parameters are selected, some uncertainty in the estimators
v̂i is unavoidable. In order to deal with this uncertainty of the estimators v̂i,
we do not blindly accept the action with the smallest estimated cost, but give a
special status for the decision which would be chosen by the standard policy.
Let us index this action with i0. Based on the simulations we form estimates
Êi0,i for each possible action a.

Eq. (4.4) in Section 4.2.3 defines the policy iteration step for state i and arrival
k,

α′(i, k) = arg min
j∈Ai,k

{1i=j · βk + vj(α)} , ∀ i, k.

where the term 1i=j ·βk corresponds to the blocking and is so called immeadiate
cost of the action i → j. There is no uncertainty involved in the immeadiate
costs. Immediate cost is either zero if the connection is accepted, or βk if the
connection is blocked. When two alternative actions leading to states i1 and i2
are compared, only the difference in immediate costs, i.e.

Hi1,i2 = βk · (1i2=i − 1i1=i)

is important.

Note that the information about if either action blocked the connection request
is included in the destination states i1 and i2 (one need not know i). The dif-
ference in the number of active connections between the states i1 and i2 deter-
mines possible blocking (is there one connection less in either state). Hence,
the difference in immediate costs, Hi1,i2 , can be expressed as a function of i1
and i2.
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Then, as the decision we choose the action ai,k leading to state j which mini-
mizes the quantity

Hi0,j + Êi0,j + κ · σ̂i0,j, (4.15)

where κ is an adjustable parameter. Note that for j = i0 this quantity is equal
to 0. Thus, in order for another action j to replace the action i0 of the standard
policy, we must have Hi0,j + Êi0,j < −κ · σ̂i0,j, i.e. we require a minimum level
of confidence for the hypothesis 1j=i · βk + vj < 1i0=i · βk + vi0 . An appropriate
value for κ has to be determined experimentally.
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Figure 4.11: Average cost rate r of the iteration policy as a function of the parameter
k. The horizontal line represents the cost rate of the standard policy. The minimum lies
in the range k = 0.5 . . . 2 in this case. The set of routes was specified with ∆l = 0
and rmax = 4 explained in 5.2.1.

If κ is too small, wrong decisions are made more frequently. On the other hand
too high a value of κ prevents the choice of other alternative actions totally. In
Fig. 4.11 the performance behaviour of a certain system is depicted as a func-
tion of κ. The horizontal line represents the costs obtained with the standard
policy. From the figure it can be seen that once κ is higher than about 10 the
iteration policy reduces to the standard policy.

Time Complexity of the First Policy Iteration Approach

Clearly the simulation of the future, even for a limited period T , at each de-
cision epoch makes the first policy iteration algorithm very time consuming.
Assume that a single decision of the standard policy takes a constant time u.
Let N be the number of the simulations that are run for each alternative action,
A the average number of alternative actions per decision (possible RW pairs),
λ the total arrival rate to the network (assuming uniform load for simplicity),
and T the period covered by one simulation replication. Then, the running
time of each decision is on average

ui = A ·N · (λT )u = λANT · u,
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Algorithm 3 First policy iteration in D-RWA
A connection request arrives between nodes A and B
Let α0 be the standard policy action, and α1, . . . , αm be alternative actions
Generate N independent sets of future arrivals, Aj

D0 ← 0
for j = 1 to N do

Make initial action α0

Run simulation with arrivals Aj

Store the total costs to C
(j)
0 {Reference costs}

end for
for i = 1 to m do

for j = 1 to N do
Make initial action αi

Run simulation with arrivals Aj

Store the total costs to C
(j)
i

end for
Ê ←mean(Ci −C0)
σ̂ ← std(Ci −C0)
H ← 1αi blocks · βk

D ← H + Ê + k · σ̂
if D < D0 then

α0 ← αi {set new policy}
D0 ← D

end if
end for
α0 is the resulting policy
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so the running time is λANT times longer than with the underlying algorithm.
Neither λ nor A are parameters of the algorithm. Hence, the tradeoff between
the goodness of solution and the running time is defined by choosing the value
for product N · T .

For example, to get decent results with a simple 11 node network (Fig. 5.1)
with moderate load (µ = 1 and λk = 0.4 for all κ), about 100 samples (simu-
lation replications) were required, each 1/µ time units long. So the increase in
running time was of the order of 103 − 104. It is clearly essential for the first
policy iteration approach that the decisions of the underlying standard policy
can be determined quickly.

4.6 Acceleration of Policy Iteration

In this section we study the possibility to accelerate the first policy iteration.
In the first policy iteration N different future realisations are generated. The
set of possible future events is huge (or actually non-countable) and only very
small portion of them can be included in the simulations. Also the revenues
or the costs of different realisations may differ a lot. Assuming we are esti-
mating the cost due to the lost calls, we would like to favour such realisations
which are more likely to cause costs. Essentially, it is not useful to sample such
realisations which do not have any contribution to the costs. That is we are
applying the importance sampling; we try to make the more important events
more probable in the simulation.

Next a brief introduction to the importance sampling is presented, and then
the technique is applied to the first iteration approach in order to reduce the
number of required future replications (=samples) in the simulations6.

4.6.1 Importance Sampling

Suppose we are trying to estimate the expectation of some random variable. In
a problematic case the estimator based on direct simulations can have a high
variance, which leads to many samples or a poor estimate. Such a problem
can be avoided to some degree with appropriate variance reduction methods
presented e.g. in [Ros00].

Let X = (X1, X2, . . . , Xn) be a set of random variables and h(x) some function
of them. We are interested in the mean of A = h(X):

θ = E [A] = E [h(X)] .

6The importance sampling technique is also applicable when the performance of an ar-
bitary heuristic algorithm is evaluated.
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Assume that it is not possible to analytically calculate the above mean, but it is
still possible to run simulations in order to get samples of A.

The obvious estimator for θ is obtained by directly taking k samples from the
given probability distribution and averaging them,

Â = 1/k ·
k∑

i=1

Ai,

where Ai are i.i.d. random variables, Ai ∼ h(X). Then,

E
[
Â
]

= θ,

V
[
Â
]

= E
[
(Ā− θ)2

]
= V [Ai] /k.

Thus, the smaller the variance of Â, the better. Several techniques to reduce
the variance of the estimator are presented in [Ros00]. Here we concentrate
on the importance sampling where the events having a greater contribution
to the expectation are made more probable in the sampling and vice versa.
This technique is supposed to give a better estimate with the same number
of samples (or even fewer) than the direct estimator. Especially, those x, for
which h(x) = 0, can be excluded from the sample space as their contribution
to final estimate is zero.

Let f(x) be the probability density function of X. Then,

θ = E [h(X)] =

∫
h(x)f(x)dx.

The discrete case is treated identically, but instead of integration a n-fold sum-
mation is taken.

Let g(x) be another probability density function for which it holds

g(x) = 0 ⇒ f(x) = 0,

i.e. whenever g(x) = 0 the original probability density function f(x) is also
0. Requirement quarantees that every possible event in the original distribu-
tion, i.e. an event that occurs with a non-zero probability, is also taken into
account under the new probability distribution. Denote with Y a random vari-
able whose p.d.f. is g(x).

Then the quantity θ can be expressed as

θ =

∫
h(x) f(x)

g(x)
g(x) dx = E

[
h(Y) f(Y)

g(Y)

]
= E [z(Y)] , (4.16)

where z(x) = h(x) f(x)/g(x). Thus, the interesting quantity θ can be estimated
by generating samples of random variable Y with p.d.f. g(x) and estimating
the expected value of z(Y) instead of h(X).
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Likelihood Ratio

The quantity q(x) := f(x)/g(x) in the equation (4.16) is called the likelihood
ratio. When taking the samples of Y with the new p.d.f. g(x) each outcome
h(x) is simply multiplied with the appropriate likelihood ratio q(x) in order to
get an unbiased estimator:

θ = E [h(X)] = E [q(Y) · h(Y)] . (4.17)

Furthermore, the average likelihood ratio q̄ can also be determined:

q̄ = E [q(Y)] = E [f(Y)/g(Y)] =

∫
f(x)/g(x) · g(x) dx = 1.

New Estimator with Importance Sampling

Instead of obtaining samples Ai ∼ h(X), we have another set of samples Bi,
where Bi ∼ z(Y). The estimator of θ becomes

B̂ = 1/k ·
∑

Bi,

for which it holds

E
[
B̂
]

= E [z(Y)] = θ, (i.e. the estimator is unbiased)

V
[
B̂
]

= V [Bi] /k = V [z(Y)] /k.

The variance of the estimator is directly proportional to the variance of the
estimated random variable.

Optimal Probability Density Distribution

If the new p.d.f. g(x) can be chosen so that the variance of z(Y) becomes
smaller than the variance of the original estimator, then the importance sam-
pling technique is worth using. The variances are

V [h(X)] = E
[
h(X)2

]− E [h(X)]2

= E
[
h(X)2

]− θ2,

V [z(Y)] = E
[
z(Y)2

]− θ2.

Thus, the optimal choice for new p.d.f. g(x) minimizing the variance V [z(Y)]
is the one which also minimizes the second moment of z(Y).
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4.6.2 Importance Sampling Applied to the First Iteration Ap-
proach

Next the importance sampling technique is applied to the first iteration ap-
proach while the aim is to get a reasonable estimate about the future with fewer
samples leading to a faster decision making.

Assume that connection requests from each traffic class k, k ∈ K, constitute a
Poisson process with arrival rate λk. Let Ak be the random variable represent-
ing the number of class-k arrivals during the time interval (0, T ).

The Poisson process has the following nice property (see C.3):

Theorem 4.1 Given that a certain number of arrivals from a Poisson process has
occurred during a time interval (0, T ), these arrivals are uniformly and independently
distributed in the same interval.

This property will be useful when characterizing the importance sampling, or
rather the likelihood ratio to be exact, within the first iteration framework.

The interesting quantity here is the average cumulative costs c during the finite
time interval (0, T ):

c = Ef [c(X)] ,

where f(x) is the p.d.f. of the finite time future events (arrivals and departures)
and c(x) is the cumulative incurred costs during the time interval (0, T ) with
the future realisation x of the process.

Altering Arrival Rates

The problem with simulating a typical network is that blocking is a rare event.
In other words, if the offered traffic were higher the blocking probability would
also be higher. So the obvious idea is to increase the arrival rates of some
or all traffic classes, i.e. instead of using the original arrival rates {λk}k∈K a
new set of arrival rates {λ∗

k}k∈K is used, where λ∗
k > 0 ∀ k ∈ K. The holding

time distributions as well as the revenue rates/average losses of missed calls
wk are kept the same. Clearly the realisations generated with the new arrival
parameters have new probabilities, or probability densities g(x) to be exact.

Let g(x) be the p.d.f. of the finite time future events with altered arrival rates.
According to (4.17) the average cumulative costs during the time interval (0, T )
then become

c = Eg [q(X)c(X)] ,

where the q(x) is the likelihood ratio. Thus, certain realisations with new ar-
rival parameters are more likely to occur than they used to be, and vice versa.
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Hence, the cost estimate obtained in a direct way with the new arrival process
would give false results. To correct this we must weight the cost from each
realisation appropriately with the likelihood ratio, which will depend only on
the number of arrivals as will be seen in the following.

For the Poisson process determining the likelihood ratio is indeed fairly easy.
The arrival realisations can be classified according to the number of arrivals
from each traffic class. Let nk be the number of class-k arrivals in a given
realisation, i.e. Ak = nk. For the Poisson process these arrivals were uniformly
distributed to the given time interval (0, T ), as stated by Theorem 4.1. Thus, as
every realisation x with the same number of arrivals from each traffic class k
are equally likely to occur, we can concentrate on the number of arrivals and
neglect the actual arrival times. A more formal proof follows.

Number of Arrivals

The probability that there are nk class-k arrivals from the original arrival pro-
cess Ak is

P{Ak = nk} =
(λk · T )nk

nk!
e−λk ·T ,

i.e. a Poisson distribution with parameter λk · T . The arrivals from the dif-
ferent traffic classes are independent and thus the probability of having n =
(n1, . . . , nK) arrivals from the original arrival processes is simply the product

P{A = n} =
∏
k∈K

(λk · T )nk

nk!
e−λk·T = T ne−λ·T ∏

k∈K

λnk
k

nk!
,

where n =
∑

nk and λ =
∑

λk.

Similarly, the same number of arrivals from each traffic class with the new
arrival process A∗ would occur with the probability

P{A∗ = n} = T ne−λ∗·T ∏
k∈K

(λ∗
k)

nk

nk!
.

The costs we want to estimate can be written as

c = E [c(X)] = E [E[c(X)|A]] = E [c̃(A)] ,

where c̃(n) = E[c(X)|A = n] is the average cumulative costs during the time
interval (0, T ), when there are nk uniformly distributed class-k arrivals, for
each k ∈ K, during the given period of time.

Similarly as in the continuous case, the importance sampling with arrivals A∗

having a different point probability distribution becomes

E [c̃(A)] =
∑
n

P{A = n} · c̃(n) =
∑
n

P{A = n}c̃(n)

P{A∗ = n} P{A∗ = n}

= E∗

[
p(A∗)
p∗(A∗)

c̃(A∗)
]

,
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where the subscript ∗ denotes that the expectation is to be taken with respect
to the alternative point probability distribution of the arrivals A∗. Similarly,
the likelihood ratio q(n) is

q̃(n) =
P{A = n}
P{A∗ = n} = e−(λk−λ∗

k)T
∏
k∈K

(
λk

λ∗
k

)nk

.

Likelihood Ratio with Future Realisations

Next it will be shown that for any future realisation x the likelihood ratio q(x)
depends only on the number of arrivals from different traffic classes. To be
exact, for each n it holds that

∀ x ∈ Ωn q(x) = q̃(n),

where Ωn denotes the class of future realisations with n arrivals from the re-
spective traffic classes.

Formally, let (Ω,F , µ) be a probability triple, i.e. Ω is a sample space, F its σ-
algebra and µ a probability measure µ : F → R [Wil91, Dud89]. Here the sam-
ple space Ω consists of the possible arrivals and departures during the finite
time interval (0, T ). The sample space is divided into sub spaces Ωn according
to the number of arrivals nk from each traffic class k, k ∈ K. According to The-
orem 4.1, the probability measure (or rather its density) µ is constant within
each Ωn.

There are two probability measures here:
∫

f and
∫

g, which, like stated be-
fore, have a constant density within each Ωn, i.e. also the likelihood ratio q(x)
is constant: q(x) = f(x)/g(x) = cf/cg where cf and cg are some constants.
Furthermore, it holds that

P{A = n} =

∫
x∈Ωn

f(x) =

∫
x∈Ωn

cf , and

P{A∗ = n} =

∫
x∈Ωn

g(x) =

∫
x∈Ωn

cg.

Thus, for each x ∈ Ωn the likelihood ratio q(x) becomes

q(x) =
cf

cg

=

∫
x∈Ωn

cf∫
x∈Ωn

cg

=
P{A = n}
P{A∗ = n} = q̃(n).

Next the likelihood ratio is determined for some simple cases.

Constant Increase in Arrival Rates

One possibility to increase the expected costs is to increase all the arrivals rates
by multiplying them with a common factor α > 1

λ∗
k = α · λk.
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Then the likelihood ratio q̃ is

q̃ =
∏
k∈K

(
λk

α · λk

)nk

e−(λk−αλk)T = C ·
(

1

α

)n

,

where C =
∏
k∈K

e(α−1)λk ·T = e(α−1)A, A = λT is the expected number of arrivals

from the original process, and n =
∑

k nk is the total number of arrivals in a
given realisation. So the likelihood ratio can be written as

q̃ =
(eα−1)

A

αn
.

The good thing with this choice is its simplicity, there is only one constant
which must be determined.

Increase Proportional to the Revenue

Another possibility is to increase the arrival rates of traffic classes in proportion
to their revenue:

λ∗
k =

1

α
wkλk,

where α is some positive constant to control the total arrival rate. Now the
likelihood ratio q̃ is

q̃ =
∏
k∈K

(
λk

1
α
· wk · λk

)nk

e(λk− 1
α

wkλk)T = C · αn

wn1
1 · wn2

2 · . . . · wnK
K

,

where n is again the total number of arrivals and constant C is

C =
∏
k∈K

e−(1−wk/α)λkT = e−A+ T
α

P
k∈K wkλk = e−A+ 1

α
D,

where D is the average offered revenue during the time period.

4.7 RWA with Additional Information

In this section we consider the case where some additional information is avail-
able. Among the possible extensions are

1. the durations of the existing and currently arriving connections are known

2. the durations of all connections are known (can be still class specific but
constant)
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4.7. RWA WITH ADDITIONAL INFORMATION

3. the future is totally deterministic (the arrivals and their durations are
known)

In the first two cases the arrival process is assumed to be a Poisson process.
Also, any combination of traffic classes described above and ordinary Poisso-
nian arrivals with exponential service times could be considered.

1

2

3

4

5

T

Figure 4.12: Sample arrival process to the two node network.

With the additional information the optimality may depend on the problem
formulation, whether we are looking at the number of blocked calls or the
average number of active connections over the time.

In the following a problem formulation with perfect information about the fu-
ture is first presented. With perfect information the future is deterministic, and
the problem is slightly different. Then the standard traffic model with Poisso-
nian arrivals is considered, however assuming that the durations of connection
requests are revealed at the time of arrival. A simple M/M/1/1-system is con-
sidered as an example of this type.

4.7.1 Perfect Information

As an example consider a simple two node network with one fibre connecting
the nodes. In Fig. 4.12 a sample arrival process is depicted and it is assumed
that everything is deterministic (perfect information about the future). Thus,
the arrivals and durations of connection requests are known. The problem is
one kind of time tabbing or scheduling problem, we try to pack the connections
as efficiently as possible where time is an additional dimension. Assuming that
there are two wavelengths (W = 2) available we have the following (essential)
cases:

If the revenue is per call the optimal policy is clearly accept 2,3,4,5. On the
other hand, if the revenue is collected per time unit the optimal policy is accept
1,2,4. Thus, it is strikingly clear that the optimal policy is different depending
on if the costs/revenues are defined by calls or per time unit, unlike the case
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policy blocked calls carried calls carried traffic
accept 1,2,4 2 3 21
accept 1,2,5 2 3 20
accept 1,3,4 2 3 20
accept 1,3,5 2 3 19
accept 2,3,4,5 1 4 10

Table 4.2: The number of blocked calls vs. carried traffic.

with the standard traffic model. It is not worth accepting a long call with low
payoff. That is, we are no longer working in the MDP framework as the policy
α no longer defines a Markov system but a totally deterministic system.

When the first policy iteration approach is applied to the case of perfect in-
formation, we can go beyond the first iteration step, i.e. a decision tree can be
built and after evaluating its leaves the most promising move is made (in in-
finite time horizon problem we cannot build the tree to infinity). The number
of the future samples required is one as we know the future. Hence only one
sample is necessary. Furthermore, if there are A alternatives on average at each
decision epoch, the number of policies up to depth d is

C = Ad.

By depth we mean the number of levels in the decision tree, e.g. in the case
of the first policy iteration d = 1. Assuming that there are only few choices
(if more, consider only the most promising candidates using similar heuristic
reasoning as standard policy) for example 4, a feasible depth d is of the order
8−10. This corresponds to about 6 ·104 . . . 106 different possibilities, which can
be checked with simple brute force method.

Furthermore, while evaluating the previous move we have already obtained
a subtree of the next step. Thus, only the lowest level of tree needs to be ex-
panded one level further and then new estimates are calculated for each node.

1a a a2 3 a a4 5

R

1b b b b432

Figure 4.13: An example decision tree with the search depth d = 2. In the figure,
values ai denote the estimated revenues using given path, and a4 is the maximum
among them.

This is equivalent to building a decision tree and evaluating its leaves. In Fig.
4.13 such a tree is depicted. The root of the tree denotes the current state of
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4.7. RWA WITH ADDITIONAL INFORMATION

the system and there are three possible choices to be made. A choice here is
equivalent to deciding a route and assigning a wavelength to an incoming call
(or rejecting it). In the example decision tree the search extends to two deci-
sions, i.e. all possible combinations how the next two connection requests can
be treated are considered. After that the future costs are estimated using the
standard policy and, by combining these, an estimate for each path is obtained
(values ai). In combining it is probably useful to use discounting (giving less
weight on later costs as the estimate becomes less accurate), because otherwise
the last decision at the end of sample realisation has too much weight.

In the example presented in Fig. 4.13 the path a4 turned out to be the best
choice among all the paths ai. So, the initial choice along this path is chosen
as the next decision. Then a new tree corresponding to the path a4 is formed,
i.e. the new tree consists of the subtree of the previous tree with one additional
level of possible choices so that the “search depth” remains constant 2. Then
the same procedure is repeated again. Assuming that the standard policy is
near optimal, the resulting policy can be assumed to be very good.

4.7.2 Known Durations

Here we consider a case where the arrival process of each traffic class is a Pois-
son process and the durations of connections are exponentially distributed, but
there is some additional information available. Namely, at the time of arrival
the duration is drawn from the exponential distribution and it becomes known
to the controller. That is, at the time of its arrival the customer presents a re-
quest for a certain time interval. Thus, at any point of time the controller is
aware of when the currently configured connections will end. Hence, the fu-
ture is somewhat more deterministic than what it was with the standard traffic
model.

If the policy does not take into account the known durations, the performance
of the system is identical with a system with unknown durations, i.e. a normal
MDP. In the first policy iteration the relative values of different actions were
estimated by sampling the finite future with the standard policy. As we now
know more about the future, this information can be exploited in the simula-
tions. The knowledge about the durations of existing and current connections
can be taken as an ability to sample “the more correct” future realisations. That
is, we should get a better estimate of what indeed will happen. Furthermore,
the first iteration policy with otherwise same parameters should give better
results if the durations of connection requests become known at the moment
of arrival.
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cycle
T 0

0 T

T 1

Figure 4.14: M/M/1/1-server model and one service cycle.

M/M/1/1-Server as an Example

Next a simple M/M/1/1-server model is studied in order to get some idea if
the knowledge of the customers’ service times actually could lead to consider-
able improvements. The simple model is chosen, since it is clearly extremely
difficult to solve the optimal policy analytically for anything more complex.

Assume that we have a one server model without any waiting places. Cus-
tomers arrive according to a Poisson process with intensity of λ, and their ser-
vice times obey the exponential distribution with parameter µ. Furthermore, it
is assumed that the service time becomes known to the system at the moment
of arrival just before the acceptance/rejection decision.

The system can be in two states: either it is empty or there is a customer in
service. If the policy is not to reject any customers, the blocking probability is

b0 =
λ

λ + µ
=

a

1 + a
, where a = λ/µ.

Consider an alternative policy that accepts only those customers whose service
time is smaller than x. Hence, at the limit x → ∞ the policy reduces to the
previous accept all-policy. It is obvious that if a customer with service time
x is rejected, then also any customer having a longer service time should be
rejected, as accepting such a customer would cause even more blockings in the
future on average.

Examine one service cycle that starts when a customer leaves the system and
ends when the next (non-rejected) customer has left the system. Within this
cycle, denote the idle time with T0 and the service time with T1 (see Fig. 4.14).
The probability that a customer arriving at an empty system is accepted is

P{customer accepted|empty system} = P{D < x} = 1− e−µx =: p(x).

The number of customers arriving to an empty system during the idle time
obeys the geometrical distribution7 with parameter p(x). Hence, the average
number of blocked customers during the idle time is

E [B0] =
1

p(x)
− 1 =

1− 1 + e−µx

1− e−µx
=

e−µx

1− e−µx
.

7Service times are i.i.d., Bernoulli-trials until one succeeds.
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The average service time of an accepted customer is

E[D|D < x] =

∫ x

0
tµe−µt dt

P{D < x} =
1

µ
− e−µx

1− e−µx
x =: E [T1] .

During the service time on average E [B1] = λ · E [T1] customers are rejected
since the system is full. Hence, during one service cycle one customer is served
and E [B0]+E [B1] customers are blocked on average. Thus, the average block-
ing probability of the system is

b(x) =
E [B0] + E [B1]

1 + E [B0] + E [B1]
=

λ
µ

+ (1− λx) e−µx

1−e−µx

1 + λ
µ

+ (1− λx) e−µx

1−e−µx

=
a + z(x)

1 + a + z(x)
,

where

z(x) = (1− λx)
e−µx

1− e−µx
=

1− λx

eµx − 1
.

The function b(x) is strictly increasing. So in order to minimize the blocking
probability, the function z(x) must be minimized. That is, the optimal thresh-
old x is the one which minimizes the function

z(x) =
1− λx

eµx − 1
. (4.18)

By using L’Hospital’s rule we get{
lim

x→0+
z(x) =∞,

lim
x→∞

z(x) = 0.

Also z(1/λ) = 0. Furthermore, by examining the numerator and denominator
it can be deduced that

when x ∈ (0, 1/λ), then z(x) > 0,
when x ∈ (1/λ,∞], then z(x) < 0.

Thus, the optimal rejection threshold x is somewhere between (1/λ,∞), and
can be numerically obtained by minimizing (4.18).

In Fig. 4.15 an example is presented. The offered load was a = 1 with λ =
µ = 1. The optimal threshold was found to be about 1.8414, which gives about
45.7% blocking probability. Hence, in this case the benefit from knowing the
customer service times was about 9% reduction in the blocking probability.
The original blocking probability was very high, i.e. 50%, which means that
even if we block one customer the next one will arrive quite soon. Thus, the
gain rejecting some of the customers is not very high in this case.

4.8 Summary

In this chapter the dynamic routing and wavelength assignment problem was
studied. For any moderate size or larger network the state space is huge and
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Figure 4.15: The blocking probability b(x) with λ = µ = 1 as a function of threshold
x. The minimum blocking probability b(x) ≈ 0.457 is obtained when x ≈ 1.84.

the exact optimal policy cannot be obtained. Thus, the only practical solution
is to use heuristic algorithms. Several reasonably good heuristic algorithms
are described in the literature.

A novel way to improve any given heuristic is to apply so called first policy
iteration step. The drawback with the first policy iteration is a considerably
longer running time when compared to the standard policy. This problem
can be alleviated to some degree by using the importance sampling method,
where one tries to favour events having the largest contribution to the esti-
mated quantity.

At the end of the chapter some special cases of the traffic process are consid-
ered, i.e. cases where some additional information is available about the traffic
process (e.g. the duration of arriving connection request).
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Chapter 5

Evaluation of Dynamic RWA
Algorithms

The network operator’s goal is generally to make as much profit as possible,
which to some degree is equivalent to maximizing the average number of users
in the network. On the other hand, the customers do not like if their requests
get often blocked, which possibly can lead to a situation of losing some cus-
tomers to the competitors and resulting in a decrease in connection arrival
rates, which in turn reduces incomes.

Evaluation of different routing and wavelength assignment algorithms is not
a straightforward task. For instance, some connection requests may have a
higher priority than the others.

In this chapter simulation results are presented for different kind of traffic pro-
cesses. Special attention is paid to the first iteration approach, presented in
Section 4.5, and its performance in the different test cases. Throughout this
chapter the traffic is assumed to be dynamic, i.e. traffic requests arrive accord-
ing to some traffic pattern.

5.1 Blocking Probability vs. Offered Load

Suppose we are given a network and a traffic matrix, which defines the average
number of lightpath requests per time unit between any pair of nodes. We have
two algorithms A and B which are to be compared. Assume that traffic matrix
can be scaled with a real coefficient α > 0. We can define two gains (similarly
as in [KA98]):

• Blocking probability gain defined as the difference between blocking prob-
abilities of different algorithms with the same offered load
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Figure 5.1: Hypothetical WDM-network residing in Finland.

• Utilization gain defined as the maximum increase in offered load possible
while maintaining lower or equal blocking probability.

In the test cases presented in this chapter the performance of different algo-
rithms is compared using the same offered load, i.e. the blocking probability
gain is examined.

5.2 Simulation Parameters

The core network used in all simulations is presented in Fig. 5.1. The network
is assumed to have 8 wavelength layers and no wavelength conversion is pos-
sible.

It should be recognized that the results for the first iteration policy were ob-
tained by two levels of nested simulations. In order to assess the performance
of the policy, an outer simulation is run, where connections arrive and leave
the network and blocking times or events are recorded. Upon each arrival in
this outer simulation, a number of inner simulations are launched from the
current state in order to make a comparison between different decision alter-
natives. Based on this comparison one alternative is chosen and used in the
outer simulation, which then continues until the next arrival upon which time
the decision analysis by the inner simulations is again started.
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5.2.1 Selection of Routes

The possible routes per node pair (or traffic class) were calculated beforehand.
Generally the set of routes is enormous. So, some way of pruning is needed.
In this study the set of routes was specified with parameters ∆l and rmax. Pa-
rameter ∆l sets the maximum number of extra additional links a route can
contain when compared to the shortest route. The second parameter rmax de-
fines the maximum number of routes per traffic class, i.e. only the rmax first
found routes are included in the set. For example, with ∆l=0 and rmax=10
only the shortest routes are included, and if there are more than 10 shortest
routes for some node pair only the first 10 found are included.

A third possible parameter to limit the running time of the first iteration ap-
proach is maxtest, which defines the number of alternative actions evaluated
against the standard policy. This effectively limits the running time when the
load is low in the network and there are plenty of RW pairs available.1

0 2 4 6 8 10
2

2.5

3

3.5

4

4.5

5

∆ l

P
(B

) 
/ %

Effect of route length limitation

basic

lpcolor

aurpack

pcolor

Figure 5.2: Blocking probability as a function of the parameter ∆l. The other routing
parameter rmax set no limit on the number of routes. At ∆l = 3 the standard policies
from the worst to the best are basic, aurpack, pcolor and lpcolor (all without the first
iteration).

In Fig. 5.2 the performance of a few heuristic algorithms is presented as a func-
tion of the routing parameter ∆l. The other routing parameter rmax was cho-
sen to be high enough in order not to cause any restriction on the set of routes.
The y-axis represents the blocking probability under a uniform load. Clearly
too small a set of routes limits the performance but, as can be seen from the
Fig. 5.2, also too large a set of routes can decrease the performance of some
algorithms. In this case the problematic algorithm is pcolor, which needlessly
favours the most used colours at the expense of longer routes, leading to de-
graded performance.

1Also when the load is low the choice of RW pair is not so critical
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5.2.2 Estimation of an Optimal Simulation Period

Usually the longer the simulation period T is, the better results are obtained.
Here we are, however, interested in how the current decision affects the results
when the standard policy is used for all later decisions. As was explained
before (see Fig. 4.10), after a transient period the cost rate ct(i) is very near to
the long time average c of the standard policy. Simulating over a period longer
than the duration of the transient thus gives no new information but actually
only increases the noise resulting from the stochastic nature of the simulation.
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Figure 5.3: The performance of the first policy iteration algorithm with different simula-
tions periods T and number of simulation replications N . The traffic is uniform and the
routing parameters are ∆l=0 and rmax=4. Algorithm basic is used as the standard
policy. Load is a = 0.4 for each traffic class. For reference, the standard policy alone
gives an average cost of 260 for the same arrivals.
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Figure 5.4: The performance of the first policy iteration algorithm as a function of pe-
riod T for fixed number of simulation replications N . The setup is the same as in Fig.
5.3; the graphs represent cuts of the 3D-surface of Fig. 5.3.

The average costs are depicted in Figs. 5.3 and 5.4 using the first policy iteration
with different simulation periods and number of simulations. The basic D-
RWA algorithm is used as the standard policy. The offered load to the network
is a = 0.4 for each traffic class. In the mesh Fig. 5.3 the x-axis is log10 of the
simulation period T and y-axis is the number of simulation replications N .
The z-axis represents the average costs.

In Fig. 5.4 each subfigure has a fixed number of simulation replications (N =
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Figure 5.5: The performance of the first policy iteration algorithm as a function of the
number of simulations replications N with fixed length simulation periods T . The setup
is the same as in Fig. 5.3 and 5.4 so the graphs represent cuts from the 3D-surface of
Fig. 5.3

50, 100, 200 or 400). The x-axis represents the length of simulation period T and
y-axis the average costs. Fig. 5.5, on the other hand, represents the performance
of the algorithm with fixed simulation periods T as a function of simulation
replications N . As can be seen from Figs. 5.3, 5.4 and 5.5 the results get worse
as the simulation period T grows longer than 0.5 . . . 1.0 average holding times.
This suggests that the optimal simulation period is about 0.5 · 1/µ in this case.

5.3 Symmetric Traffic and Costs

The set of simulations were run for the same test network that was used before,
i.e. the network depicted in Fig. 5.1. The network was assumed to have 8
wavelengths on each link and the offered load was uniform among all node
pairs. That is arrival rates λk, durations µk and weight factors wk were the
same for each traffic class k. Thus, knowing the average blocking probability
of the system is enough in order to know the average cost rate of the system.

Suitable running parameters for the inner simulations for this system were es-
timated from Figs. 5.3, 5.4 and 5.5 (different representations of the same infor-
mation). Based on this, the simulation period T was chosen to be T = 0.25·1/µ,
and the number of simulation replications N was chosen to be N = 50, . . . , 200
for each alternative action.

5.3.1 Numerical Results

Simulations were run with the quick heuristic algorithms as well as with the
first policy iteration algorithm with different parameters and different stan-
dard policies. The resulting blocking probabilities are shown in Fig. 5.6. The
upper part of the bars (light gray) represent two times the standard deviation
and the mean value is in the middle of upper part. The routing parameters
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Figure 5.6: Blocking probabilities in percentages with quick heuristic algorithms and
the first policy iteration. The routing parameters are: ∆l = 1 and rmax = 4. Each of
the three groups of bars, basic, pcolor, lpcolor, contain results obtained with standard
policy and iteration policy with N = 50, 100 and 200. The last group of bars gives the
results for spread, porder, ll and aurpack.
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Figure 5.7: Blocking probability with loads ranging from a = 0.3 to a = 0.6. The set of
routes were defined with ∆l=1 and rmax=4. Algorithms are, from left to right, (1) basic,
(2) basic+iteration, (3) pcolor, (4) pcolor+iteration, (5) lpcolor, (6) lpcolor+iteration, (7)
spread, (8) porder, (9) ll, (10) aurpack and (11) aurexhaustive.

here were ∆l=1 and rmax=4 which clearly limit the set of routes. The first
group of bars represents the blocking probability with basic algorithm and the
first policy iteration with N = 50, 100, 200 using basic as the standard policy.
The second group is the same but using pcolor instead of basic, and similarly
in the third figure the lpcolor is used. The fourth group is obtained with quick
heuristics spread, porder, ll and aurpack.

The improvement obtained by the first policy iteration starting with the basic
algorithm was notable, about 30%, while with pcolor the improvement is much
less. Generally the results from iteration approach are always better than any
of the heuristics which used the same set of possible routes. The aurpack and
aurexhaustive use dynamic routing strategy without route length limitations
and is here only for comparison. Also ll, porder and spread are presented just
for comparison.

In another set of simulations the iteration approach was applied with different
standard policies to get some idea about how important the underlying algo-
rithm is. In the four diagrams of Fig. 5.7 the results can be seen with four dif-
ferent offered loads, with the blocking probability varying from quite a low to

74



5.4. ASYMMETRIC TRAFFIC AND COSTS

Set Description
I Uniform case. The offered traffic between each node pair is uniform

with the rate of λ = 0.4 and the cost of each lost request is equal to 1.0.
The average duration of connection is 1/µ = 1.0.

II Non-uniform costs. The offered load between each node pair is still
uniform, but the cost of lost calls differs. A lost connection request
to/from node 2 costs 3.0, connections 1-3, 1-6, 1-7, 6-7 and 6-10 have
weight 1.0, and the rest of the connections have weight 0.5. So the
offered income rate is the same as in the uniform case. The average
duration of connections is the same 1.0.

III Non-uniform arrival rates. Here we alter the arrival rates of the con-
nections for which the other end is node 2 to 1.2, and the arrival rates
between 1-3, 1-6, 1-7, 6-7 and 6-10 are set to 0.4, while the rest of the
connections have an arrival rate of 0.2. Thus, the total arrival rate of
the connection requests to the network remains again the same. The
average duration of connections is the same 1.0 and cost of lost con-
nection requests is 1.0 for all traffic classes.

Table 5.1: The test scenarios: case I is a reference point, where everything is uniform,
whereas in the other two cases either arrival rates or costs are non-uniform.

a high value. The algorithms used were (in order) basic, basic+iteration, pcolor,
pcolor+iteration, lpcolor, lpcolor+iteration, spread, porder, ll, aurpack and aurexhaus-
tive. In these simulations the routing parameters were also the same ∆l=1 and
rmax=4. The number of simulations replications, N , for each alternative action
was chosen to be 200. So aurpack and aurexhaustive have again much larger set
of possible routes to choose from. It can be seen from the figure that in each
case the iteration algorithm indeed gives slightly better results.

5.4 Asymmetric Traffic and Costs

In the previous section the traffic in the network was assumed to be homo-
geneous. Between each node pair there was a constant arrival intensity of
connection requests and call durations obeyed the same probability distribu-
tion. Furthermore, each lost connection request contributed an equal cost. In
practice the situation is rarely so simple. Therefore, in this section an asym-
metric traffic process is studied and some numerical results from simulations
are presented.

Three test scenarios were created, each having a different kind of characteris-
tics. Every traffic scenario was based on the network shown in Fig. 5.1. The
network was assumed to have 8 wavelengths available on each link and there
was single fibre pair on every link. The test scenarios used in the simulations
are listed in Table 5.1. The first scenario is uniform traffic, and it is used as a
reference point. In the other two scenarios a special status is given to the node
2. The special status could arise e.g. in the case where the node represents a
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parameter value description
W 22 the total offered income rate to the network, uni-

form in cases I and III
λtot 22 the total offered load to the network, uniform in

cases I and II
µ 1.0 the mean duration of connection, ∼Exp(µ)
κ 2.0 constant related to the decision making, defines

the level of “certainty”
N 200 the number of simulation replications in the iter-

ation approach
T1 0.25 · 1/µ the length of simulation replication in the itera-

tion approach, the first experiment
T2 0.50 · 1/µ the length of simulation replication in the itera-

tion approach, the second experiment

Table 5.2: The running parameters used in test cases.

gateway to international network. To facilitate comparison with the uniform
traffic case the rates λk and expected revenues per call wk were adjusted so that
the offered income rate W =

∑
k λkwk was kept constant.

5.4.1 Numerical results

In this section we investigate the performance of the first policy iteration start-
ing from different heuristic policies. The parameters used in the simulations
are given in Table 5.2. The choice of these parameters represents a tradeoff be-
tween the performance and the running time, and was done on the basis of the
considerations of the previous sections.
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Figure 5.8: The performance of the algorithm in different test scenarios with (1) basic,
(2) pcolor and (3) lpcolor as the standard policy. The simulation period is 0.25 · 1/µ.
Each pair of bars relates to one of these policies, the left bar is obtained with the
standard policy and the right bar with the corresponding first iteration policy.
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Figure 5.9: The performance of the algorithm in different test cases with (1) basic, (2)
pcolor and (3) lpcolor as standard policy. The simulation period is 0.50 · 1/µ.

As suggested by Fig. 5.4 the number of simulation replications N was chosen
to be 200 and the simulation period T to be 1/4 or 1/2 times the average hold-
ing time. The improvement when the number of samples was increased from
200 to 400 was not significant. Note that the previous simulations were run
with a much smaller set of possible routes per node pair than these. The new
routing parameters ∆l = 3 and rmax = 30 allow routes that are longer than the
shortest path in the search space. While the number of routes in these simula-
tions is much larger than in those from which the parameters were obtained,
it is expected that the same parameters work quite well. The value of κ was
chosen to be 2.0 to be on the safe side (see Fig. 4.11).

The first policy iteration approach was studied with these parameters in three
different traffic scenarios presented in the beginning of this section. The results
with different parameters and algorithms are presented in Figs. 5.8 and 5.9.
The y-axis represents the average costs obtained from the outer simulation. In
Fig. 5.8 the simulation period T was 1/4 times the average holding time, while
in Fig. 5.9 the period was extended to 1/2 times the average holding time. Each
pane represents one traffic scenario. In the first pane the traffic is uniform, in
the second pane the costs are non-uniform and in the last pane the traffic is
non-uniform. The bars in figures represent average costs in each case. In each
pair of bars the bar on the left represents the result obtained with the standard
policy and the bar on the right is the one obtained with the first policy iteration.
The standard policies from left to right are basic, pcolor and lpcolor. The results
of the standard policies are naturally the same in both figures. The length of the
outer simulation from which the average costs were collected was 200 holding
times.

Figs. 5.8 and 5.9 show that in each case the iteration leads to a better policy, and
that the improvement is really notable in the case where basic was used as the
standard policy. Since basic is the worst algorithm, such an improvement is not
a surprise. Note that in the uniform case the average costs are generally higher
than in the other cases. This is probably because a large part of the “important”
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connections were quite short making the non-uniform case easier to control. It
is also worth noting that the first iteration policy using either basic or pcolor
as the standard policy gave similar results, while the best performance was
obtained by using lpcolor as the standard policy.

In the non-uniform cost case the improvements were generally much less when
pcolor or lpcolor were used as the standard policy. Still the difference between
pcolor and lpcolor performance is clear and this suggests that the first policy
iteration was not able to come to very close to the optimal policy.

The non-uniform arrival case on the other hand was very favourable for the
first iteration approach. The improvement over any heuristic policy was around
10% or higher. This can be explained by the fact that as we are actually sam-
pling the possible future realisations, the important (i.e. more probable) ones
are automatically more frequently chosen. So we get a better grasp of the fu-
ture with fewer samples. In the case where costs differ, similar favouring of
more probable realisations does not occur naturally. It would probably be use-
ful to study the applicability of importance sampling method to make more
important paths more frequent in the simulations.

5.4.2 Robustness of the First Policy Iteration

The performance of the first policy iteration approach relies on good estimates
of the parameters of the traffic process in contrast to the standard policies,
which treat all the traffic classes equally. Poor parameter estimates may dete-
riorate the performance of the first policy iteration approach considerably and
before using the first policy iteration the robustness of the algorithm should be
studied carefully.

5.5 First Iteration with Additional Information

In this section we present simulation results of the case where additional in-
formation is available upon each arrival, namely the duration of the requested
connection. The example network is the network depicted over Finland (see
Fig. 5.1). The number of available wavelengths is 8 and the offered load is uni-
form a = 1 between each node pair. The cost function is the number of blocked
calls, hence the length of the connection does not affect the price.
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Figure 5.10: Simulation results with additional information. It can clearly be seen that
the best performance is obtained with the first policy iteration approach with known
durations. The x-axis is the number of simulation replications N . The constant curves
from top to bottom are basic, lpcolor and pcolor, and the other two curves are the
first policy iteration using lpcolor as the standard policy with (lower curve) and without
(upper curve) known durations.

5.5.1 Numerical Results

In Fig. 5.10 the blocking performance of different algorithms is presented. The
horizontal lines are the standard policies basic, lpcolor and pcolor in that order
from the worst to the best. The fact that pcolor outweighs lpcolor is proba-
bly due the route pruning parameters (∆l = 1 and rmax = 4). The upper
non-constant curve is the first iteration approach using lpcolor as the standard
policy without knowledge of the connection durations, and the lower curve is
the first iteration using the same standard policy but with knowledge of the
connection durations.

In the example, the improvement over the standard policy in the case of known
connection durations is about 0.5% percentage units, i.e. the improvement in
blocking probability is roughly about 16%. One can also notice that with the
known connection durations fewer future replications N are required in order
to achieve a similar performance as in the case where there is no information
about the durations. Again, the first policy iteration approach has proven its
robustness and ability to adapt to different situations.

5.6 Summary

In this chapter the dynamic RWA problem in all-optical networks has been
studied, where the offered traffic, i.e. lightpath requests, followed different
kinds of traffic processes. The problem was handled in the framework of
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Markov decisions processes, except the last set of simulations, where connec-
tion durations became known at the moment of arrival. In particular, we stud-
ied the applicability of the first policy iteration approach, where the relative
costs of states are estimated, as they are needed, by simulations on the fly. The
problem with heuristic algorithms presented in the literature is that they do
not take into account the non-uniform traffic or other peculiarities of the sys-
tem. The first policy iteration is expected, to some extent, to overcome these
deficiencies, and this was actually the case in all test scenarios.

The first case was the uniform case, where the offered traffic between each node
pair had similar characteristics. Hence, the average blocking probability de-
scribes the overall performance of the system. The first iteration approach was
capable to lower the average blocking probability up to 30% depending on the
standard policy. Hence, the resulting policy was clearly better than the stan-
dard policies.

Then the traffic process was set to be a non-uniform or different traffic classes
had different revenue rates. The heuristic algorithms do not take this kind of
differences into account and it was hoped that the first policy iteration ap-
proach would overcome it, which indeed was the case. The performance im-
provement obtained by the policy iteration depends on the standard policy
one starts with, and in these tests the average cost rate was reduced by about
10% to 20% in most cases. The improvement was not as high in the case where
pcolor heuristics was used as the standard policy.

The last set of simulations were performed in order to see how the additional
information affects the performance of the first policy iteration algorithm. In
particular, even if the traffic process is totally deterministic the first iteration
approach methodology is still applicable. Again the simple heuristic policies
do not take advantage of additional information. The first policy iteration, on
the other hand, uses the additional information naturally and the performance
seen in the test case was superior to any of the simple strategies.

Thus, the robustness of the first iteration approach and its capability to adapt
to different situation is very promising. On the other hand, the running time
of the first iteration approach is probably too long for systems where decisions
must be made in few seconds or even in milliseconds. But for slower systems
it indeed can be used as an improvement to heuristic algorithms in real time.
Even when a long running time makes the approach infeasible in real time, this
method can still be used to assess, how close the performance of an arbitrary
heuristic algorithm comes to the optimal policy.
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Chapter 6

Restoration in WDM Networks

6.1 Introduction

In real world applications the protection against network failures plays an im-
portant role. Network operators want to make sure that the services they offer
are reliable and protected against possible cable cuts or failures of different
devices used in the network. The protection can be done in the optical do-
main. Then upper level protocols do not need to be aware of changes in the
underlying network topology.

In this chapter the optical cross-connects (OXC) of the network are assumed to
be reconfigurable, all the fibres are assumed to be bidirectional and the total
traffic demand in the network is assumed to be constant. A very readable
treatment of the restoration is given by S. Baroni in his Ph.D. thesis [Bar98].

One channel failures can occur if transmitter or receiver (of a channel) fails.
Nonetheless, the result is a network where some links are not totally dead but
can operate only to some degree. Then instead of reconfiguring all the con-
nections using such links it is sufficient to reconfigure only those connections
which are affected by the failure. As can be seen, the possible failures are nu-
merous and will not be considered in more detail here.

6.2 Point-to-Point Link Protection

The simplest form of protection is point-to-point link protection, where each
link is protected with one or more protection fibres. Traditionally, 1+1 protec-
tion, 1:1 protection, or 1:N protection are used [RS98, SB99]. In 1+1 protection
the same traffic is transmitted at the same time using two fibres, while the des-
tination end chooses the working fibre for reception. In all-optical networks
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Figure 6.1: Construction of protection cycles.

this usually means 3 dB splitter loss at the transmitter end. The receiving end
monitors the incoming signals and chooses the one which seems better.

The 1:1 protection scheme uses only one fibre to transmit the traffic at the time.
Switching to the protection fibre is done after a fault is detected. If links are
unidirectional only the receiving end detects a fibre cut, and thus there must
be some protocol in use to acknowledge the transmitter about the cable cut.
The 1:N protection scheme is a generalization of the 1:1 protection, where one
protection fibre is shared between several working fibres simultaneously.

6.3 Protection Cycles

A quick local restoration algorithm is essential so that higher level protocols
do not see any disruption in the service. Assuming that each link consists
of four fibres, two for normal operation and two for protection, simple local
restoration is possible using predetermined protection cycles.

Constructing the protection cycles for any planar graph is straightforward (see
Fig. 6.1). The edges of each face1 can be walked in clock-wise direction to form
the cycles, and the cycle formed by the edges in the border of the graph can be
walked in anti-clockwise direction. These cycles use each edge once for both
direction. If some link is cut, there are always two independent protection
cycles around it, which can be used to restore the cut lightpaths with very
small delay.

Finding such protection cycles for an arbitrary graph can be harder. Note that
orientable cycle double cover conjecture (see B.6) suggests that for any two-
connected graph G such cycles exist.

1A graph face is the connected area which edges of the graph separate. The graph in Fig.
6.1 has two faces.
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6.3.1 Planarity of Network

If the network is planar, i.e. it can be placed on a plane so that no fibres cross
each other, then, as presented earlier, the construction of protection cycles is
easy. Hence, it is worth checking if the given network is planar or not. Such an
algorithm can be found in B.4.

6.4 Single-Fibre Network

The possible failures in an optical network include cable cuts and malfunction-
ing nodes. When a network cut occurs all connections using such a link must
be re-routed. Depending on whether other connections are reconfigured as
well or not we are led into two subproblems. On the other hand, when a node
failure occurs all connections going through such a node must be reconfigured.
Of course, connections to/from the malfunctioning node are impossible to fix.
A node failure is roughly equal to the failure of all the links going into that
node. In this thesis only link failures are considered, or more precisely, single
link failures.

Optical networks can be divided into several categories according to the ca-
pabilities of the optical cross-connects, i.e. whether the nodes can perform a
wavelength conversion or not. Also partial wavelength conversion is possible,
but it is not considered here. Wavelength conversion makes routing and wave-
length assignment easier but increases complexity of the nodes and thus makes
them more expensive. If the network consists of wavelength interchanging
cross-connects (WIXC), the re-routing problem is much easier as total number
of users per link is the only limiting factor.

In the case of wavelength selective cross-connects (WSCX) the problem be-
comes harder. Here we assume wavelength agility, i.e. for each node pair ac-
tive and restoration lightpaths can use different wavelengths.

The possible approaches in the case of a single link failure are

1. Re-routing the whole network. Such operation takes time and requires a
centralized network management system (NMS). This is referred to as
restore-all (RA) approach.

2. Re-routing only failed connections. This is a simpler operation than RA ap-
proach and does not affect other connections in the network. It is, how-
ever, likely to lead to greater number of wavelengths/fibres to guarantee
protection of the services. This approach is referred to as the restore-only
(RO) approach.

3. Link restoration. The failed link can be replaced with one or more possible
reserve paths. This case was considered in Section 6.2.
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Along with different cross-connects these lead to the following four cases:

1. WIXC-RA, wavelength interchange cross-connects and restore-all,

2. WIXC-RO, wavelength interchange cross-connects and restore-only,

3. WSXC-RA, wavelength selective cross-connects and restore-all,

4. WSXC-RO, wavelength selective cross-connects and restore-only.

The routing and wavelength assignment with restoration problem can be for-
mulated at least in two ways. We can minimize the number of wavelengths
while treating the number of fibres fixed, or we can minimize the number of
fibres with fixed number of wavelengths W . In a single fibre case it is logical
to limit the survey to the former case, i.e. the problem is to find out whether
certain connections can be configured into the network so that any single link
failure can be restored. If this is not possible then the next natural goal is to
minimize the outage probability over all connections.

6.4.1 Lower-bounds for Wavelengths

Similarly as in the static routing problem presented in Chapter 3, some lower
bounds for the number of required wavelengths are easy to obtain. One lower
bound can be obtained by considering the average number of users using
working links. After the removal of a single link j from the network, we can
re-calculate the shortest paths for all the connections.2 By dividing the sum
of the path lengths by the total number of links left, L − 1, we get the aver-
age number of users per link. This is clearly a lower bound to the number of
wavelengths:

W ≥ max
j

∑
c lc,j

L− 1
,

where lc,j is the length of the shortest path for connection c when link j is not
available.

Also the lower bound obtained in Section 3.3 for the static routing problem
by cutting the network into two connected subsets can be modified to fit in
the restoration case. Here, instead of dividing by the number of links crossing
the cutting plane, the denominator is the number of links less one (one link is
assumed to fail). Hence,

W ≥ max
cut

number of connections across cut
number of links crossing the plane - number of non operational links

.

It is worth noting that neither of these bounds depend on the used routing nor
wavelength conversion capability. So they can be applied in every case.

2Note that only those connections which use malfunctional link are affected.
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6.4.2 Relationship to the RWA without Restoration Problem

In this section the relationship between the static routing and wavelength as-
signment problem (S-RWA) presented in Chapter 3 and the restoration prob-
lem is considered. Assume that there is an algorithm which minimizes the
number of wavelengths for a given network topology and static traffic de-
mand [HV99]. This algorithm is referred to as the static routing and wave-
length assignment algorithm and can be used to determine the number of
wavelengths in the case where network restoration aspect is included. In every
case, we must consider L different scenarios (any link can have a failure).

In the restore-all (RA) approach we can determine the number of wavelengths
for each possible link failure and the maximum number of wavelengths re-
quired is the answer to question how many wavelengths are required to sat-
isfy given traffic requirements with single fibre cut failures. Hence the original
algorithm must be run L times and thus taking the restoration aspect into ac-
count only makes things more complex. The solution we get is as good as the
used routing and wavelength assignment algorithm.

In the case of the RO approach we could first determine the best possible con-
figuration for the network using the basic routing and wavelength assignment
algorithm and then consider re-routing broken connections for each link at a
time. This should be quite fast an operation compared to the original problem
as we have only the maximum of W connections to re-route. But the configu-
ration which could be optimal for S-RWA algorithm is not necessarily optimal
when a link failure occurs, especially when WSXC nodes are used.

6.5 Multi-Fibre Case

In this case we have similar scenarios as in the single-fibre case. Here again we
consider different cases of WIXC and WSXC nodes as well as different restora-
tion strategies. The number of possible wavelengths W is given and the prob-
lem is to minimize the number of fibres (network planning). In the single-fibre
case we optimized the number of wavelengths as it made no sense to optimize
the number of fibres.

It is assumed that only those connections affected by the link failure are recon-
figured, i.e. the RO approach. Baroni [Bar98] lists the following restoration
cases in his Ph.D. thesis:

1. Edge-disjoint path restoration with reserved capacity. Each connection is as-
signed an active lightpath and a fixed edge-disjoint restoration light-
path. Thus 50% of the network capacity is unused under normal cir-
cumstances.
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2. Edge-disjoint path restoration. Similar to the previous case but the restora-
tion capacity is shared among other restoration paths.

3. Path restoration. The most flexible case, where any possible path is as-
signed to broken connections, i.e. any active and restoration paths may
share links and capacity.

4. Link restoration. With WIXC nodes this approach is the only local ap-
proach as interrupted connections are re-routed around the failed link.
So each used wavelength in each link has some predetermined restora-
tion path which goes around the link. In the case of WSXC the wave-
length translation is not possible and the restoration of the inoperative
connections requires co-operation of both ends, i.e. basically a new con-
nection is established.

Similar lower bounds as presented in Section 6.4.1 can be used in the multi-
fibre case as well. Here we must, however, take into account that the number
of fibres on links varies.

6.6 Network Planning with Restoration

In Section 3.4 the network planning problem was formulated in the static traffic
case. When the restoration demands are taken into account the number of
required fibres can only grow. Here the network is assumed to consist of WSXC
nodes. The equation (3.5) must be modified so that each possible network cut,
i.e. link failure, is taken into account. The model for network failure considered
here assumes that one link (denoted with `∗) at a time becomes inoperative and
the rest of the network remains fully operational. If there are multiple fibres on
some link, the model assumes that all of them become inoperative at the same
time.

The connections are indexed with z ∈ Z . Configuration of connections z
into the network is equal to assigning the connection a route wavelength pair
( p(z), c(z) ). Possible different configurations due to the link failures are de-
noted with subscripts.

Denote with B`∗ the set of connections which must be rerouted if link `∗ be-
comes inoperative. Formally,

B`∗ = {z | `∗ ∈ pz}.

Clearly for all the links `∗

‖B`∗‖ ≤ m`∗ ·W,

where m` is the number of fibres on link `. In Section 6.5 four different cases
were listed and will be briefly presented here again. In every case, the number
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of installed fibres define the cost of the solution and equation (3.4) can be used
to obtain it.

The restore-all approach is not considered here as it is simply a matter of con-
figuration of a network where one link is removed.

Edge-Disjoint Path Restoration with Reserved Capacity

In this case for each connection z ∈ Z primary and protection routes are
needed. Formally, the solution is a pair of mappings {f1, f2}, where

f1, f2 : Z → Az ×W,

with additional requirement that the routes are edge-disjoint:

∀z : p1(z) ∩ p2(z) = ∅. (6.1)

The constraint guarantees that whenever a protection route is needed, it is also
fully functional. Furthermore, we get that the number of fibres needed is

m` = max
c∈W




∑
z∈Z

c1(z)=c

I(` ∈ p1(z)) +
∑
z∈Z

c2(z)=c

I(` ∈ p2(z))


 ,

where the first and second sums correspond to primary and restoration chan-
nels from the network, respectively. The total cost can be obtained by formula
(3.4).

Edge-Disjoint Path Restoration

Now the restoration capacity is shared with normally edge-disjoint connec-
tions. Formula (6.1) must still hold, but the total number of fibres needed is
now

m` = max
`∗∈L

max
c∈W




∑
z /∈B`∗

c1(z)=c

I(` ∈ p1(z)) +
∑

z∈B`∗

c2(z)=c

I(` ∈ p2(z))


 .

It can be expected that this case gives better results than the previous case.
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Path Restoration

In this scheme all the available capacity in the network is used to reroute dis-
connected lightpaths. Instead of one restoration path, each connection can use
different paths and wavelengths depending on which link has failure. Thus,
the solution consists of L + 1 (or L) different configurations:

f, f1, . . . fL : Z → Az ×W,

with the constraint
∀z, `∗ : `∗ /∈ p`∗(z),

i.e. the alternative routes must not use the inoperative link.

Thus the number of required fibres becomes

m` = max
`∗∈L

max
c∈W

∑
z∈Z

c`∗(z)=c

I(` ∈ p`∗(z)), (6.2)

with an additional constraint,

∀z, `∗ : `∗ /∈ p(z) ⇒ f(z) = f`∗(z).

The introduced constraint guarantees that only inoperative lightpaths are re-
configured.

Another way to write (6.2) is the following:

m` = max
`∗∈L

max
c∈W




∑
z /∈B`∗

c(z)=c

I(` ∈ p(z)) +
∑

z∈B`∗

c`∗(z)=c

I(` ∈ p`∗(z))


 , (6.3)

where the summation is done in two parts, first operative connections and then
inoperative.

Link Restoration

By link restoration we mean here a concept where primary and restoration
paths are identical except that in the restoration path the inoperative link is
replaced with a (usually short) route around the failed link. Different wave-
lengths can use different around routes in order to achieve higher efficiency.
The original lightpath as well as the restoration lightpath must, however, use
the same wavelength in order to achieve a localised solution3. So in this case

3By localised solution we mean that only the nodes at the ends of the inoperative link must
be reconfigured, which is not the case if wavelength changes.
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only the nodes involved with the link restoration need to be reconfigured and
the rest of the network need not be aware about the failure.

Again the solution is a set of L + 1 mappings

f, f1, . . . fL : Z → Az ×W,

with constraints

∀z, `∗ : `∗ ∈ p(z) ⇒ p(z) ∩ p`∗(z) = p(z) \ {`∗},
∀z, `∗ : c(z) = c`∗(z).

The constraints guarantee that the solution is local, and that the restoration
paths do not use the failed link.

6.7 Summary

The restoration aspect increases the complexity of optimizing the network con-
figuration, but it is essential in order to provide reliable connections. Restora-
tion formulations can be divided into two cases depending on whether the
rerouting is a viable option or not. Furthermore, the restoration can be accom-
plished with one protection path or with many paths. In this chapter the for-
mulations assumed that only the inoperative connections were reconfigured.
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Chapter 7

Conclusions

All-optical wavelength routed networks play probably an important role in
the future data networks. The huge capacity they offer together with the high
scalability makes them a very attractive choice for the next generation net-
works. Linear Lightwave Networks is another approach where the routing
nodes combine incoming signals linearly, as the name suggests. In such a net-
work forming a broadcast tree is quite natural. Another important technique
to exploit the huge capacity of the optical fibre is the broadcast and select net-
work, where time division multiplexing together with some MAC protocol can
be used to offer good performance figures. Generally the broadcast and select
networks are suitable for LAN applications. In this thesis, however, we have
considered only the wavelength routed networks. Nonetheless, the promising
future of WDM networks makes them an interesting topic for the research.

In Chapters 1 and 2 the WDM-technology together with current solutions was
briefly described as a background material. The technology sets constraints
such as the number of wavelengths to the optimization problems presented
in this thesis. Then in Chapter 3 the static routing and wavelength assign-
ment problem was shortly discussed. The chapter contains two alternative
problem formulations and describes how those problems can be approached.
All the first three chapters serve as an introduction to the main topic of the
thesis, namely the RWA problem with dynamic traffic in wavelength routed
networks.

In practice, the connections in the network change dynamically leading to a
routing and wavelength assignment problem under dynamic traffic process.
The optimal policy cannot be obtained due the enormous size of the state
space. Still, several fairly well working heuristic algorithms are known. The
main contribution of this thesis is the application of the first policy iteration to
the dynamic routing and wavelength problem. It is known that the first pol-
icy iteration often comes very near to the optimum. This seems to be the case
also here. In all the test cases the first iteration policy obtained a better policy
than the so called standard policy, which can be chosen freely and serves as a
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starting point for the policy iteration step. The drawback with the first policy
iteration approach is the huge increase in running time as the possible actions
are evaluated by a set of on-line simulations. Whether this is a problem or
not in reality depends on the time scale. Simulation acceleration techniques
such as importance sampling can be used to reduce the running time of the
algorithm. The dynamic RWA problem is tackled in Chapter 4 and some sim-
ulation results were presented in Chapter 5.

In the last chapter the protection and restoration aspects were briefly described.
Restoration is an important issue especially in WDM networks, where even a
short outage in service means interruption of a large number of connections be-
cause of the very high capacity of WDM links. Thus quick restoration schemes
are required in order to be able to offer a good quality of service to the cus-
tomers.

An interesting subject for the future work could be a further experimenta-
tion with the importance sampling with the first policy iteration approach and
other means to reduce the running time of the algorithm. The choice of the im-
portance sampling parameters determines how well the approach can work.
Also robustness of the algorithm deserves further study. Another interesting
(and endless) branch of possible studies is the RWA problem with various a
priori information models about the traffic process such as known durations,
different distribution for the duration etc. and any mixture of them.
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Appendix A

Notations

A.1 The O-notation

When algorithms are compared it is feasible to use the “big-oh”–notation (see
e.g. [Wei97, Knu68]):

Definition A.1 A function f(n) is O(g(n)) if there are positive constants M and n0,
such that

|f(n)| ≤ M |g(n)|, ∀n ≥ n0.

In particular, polynomial algorithms are characterized by the fact that their
complexity (or steps run) is of order O(xm), where m is some positive integer.

A.2 NP-completeness

A problem is said to belong to the class of P problems if there exists a deter-
ministic algorithm which solves it in polynomial time. Problems belonging
this group can generally be considered as easy problems.

A problem is said to belong to the class of NP problems if there exists a non-
deterministic machine which can solve the problem by a “brilliant guess”, i.e.
there exists an algorithm which can check the validity of given solution to the
problem within polynomial time. Problems belonging to class P are clearly a
subset of class NP. Generally all decidable problems belong to class NP.

The subset of NP-complete problems of NP can be considered as hard. A prob-
lem belongs to NP-complete problems if any problem in NP can be polynomi-
ally reduced to it. It is unknown if NP-complete problems have a polynomial
time solution or not. Examples of an NP-complete problem are the graph node
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colouring problem (see B.5), finding a maximal clique of an arbitary graph, and
the travelling salesman problem (TSP). In TSP one is asked to find the minimal
cost cycle that goes through all the nodes of the graph (see e.g. [Wei97]).
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Graph theory

A graph is a mathematical construction of vertices (or nodes) vi, vi ∈ V , which
are connected by edges ei, ei ∈ E. Formally,

G = {V, E} .

The edges can be directional or bidirectional (which is perhaps a more usual
case). Depending on the type of the edges, the graph is called either a (undi-
rected) graph or a directed graph (or digraph) . In case of directed graph the
edges are called arcs as they have direction.

A graph is a weighted graph if the nodes or the edges have a scalar attribute
called the weight. This could represent e.g. the distance between network
nodes.

B.1 Definitions

The degree of a node vi, denoted by di = δ(vi), is the number of edges connected
to the node. The degree of graph G is the the maximum degree of its nodes:
∆(G) = max

i
di.

A graph G is complete if there is an edge between all node pairs. In Fig. B.1 a
complete graph containing five vertices is depicted.

A complement of graph G is the graph where there is an edge only between
those nodes which are not neighbours in the original graph. The complement
graph is denoted by Ḡ. In particular, a graph sum of a graph and its comple-
ment is a complete graph.

A subgraph of graph G = (V, E) consists of a subset of nodes V ′ ⊂ V , and such
edges ei ∈ E where both ends belong to V ′.
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Figure B.1: K5 Figure B.2: K3;3

A path (or walk) is a ordered list of nodes where subsequent nodes are neigh-
bours. A path is a cycle (or circuit) if the first and the last node of the path are
the same.

An edge e is called a bridge if there is no cycle where e belongs.

B.2 Shortest Path Algorithms

If the edges of a graph have weights, then the length of the path is the sum of
the weights. Otherwise, each edge along the path is counted as length one.

There are two well-known algorithms to find the shortest path between node
pairs, namely Dijkstra’s algorithm and the Floyd-Marshall algorithm (see e.g.
[BG92, Wei97]). Dijkstra’s algorithm finds the shortest path between a given
pair of nodes while the Floyd-Marshall algorithm finds the shortest paths be-
tween all node pairs. Both algorithms have the same complexityO(|V |3) when
used to find all node pairs, but the constant factor in the Floyd-Marshall algo-
rithm is lower in dense graphs. Dijkstra’s algorithm is presented in Algorithm
4.

B.3 Cliques and Independent Sets

A clique is a complete subgraph, i.e. a subset of nodes which all are neigh-
bours to each other. An independent set is a subset of nodes which are not
neighbours. Clearly an independent set of an arbitrary graph is a clique of
the graph’s complement graph, and vice versa. A maximal clique and max-
imal independent set are the ones that have the largest number of nodes in
it. Finding a maximal clique or independent set from an arbitrary graph is an
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Algorithm 4 Dijkstra’s shortest path algorithm for weighted graphs
D̄ ← {∞,∞, . . .∞, 0,∞, . . .} {distances from node A}
K̄ ← {0, 0, . . . 0, 1, 0, 0, . . .} {other distances are not known}
P̄ ← {0, 0, . . . 0, 0, 0, 0, . . .} {path is not know}
loop

v ← arg min i Di {vertex with smallest known distance}
if v is target vertex B then

break
end if
Kv ← 1 {distance to v is now known}
for w is adjacent to v do

if Kw = 0 then
if Dv + d(v, w) < Dw then

Dw ← Dv + d(d, v) {new shortest path}
Pw ← v {record path too}

end if
end if

end for
end loop{then print out path backwards}
v ← A
while v 6= B do

print v
v ← Pv

end while
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NP-complete problem [KS99]. Still there are some algorithms for generating
all the cliques/independent sets of an arbitrary graph (see e.g. [Öst99])

B.4 Planarity of Graphs

Definition B.1 A graph G is planar if its vertices and edges can be drawn in a plane
so that no two edges cross anywhere. A planar embedding of graph G is a mapping of
the graph into the plane so that the edges do not cross.

One necessary and sufficient condition for planarity of a graph is by Kura-
towski in 1930 [SK77]:

Theorem B.1 (Kuratowski) A graph G is non-planar if and only if G contains a
subgraph which is homeomorphic to either K5 or K3,3.

Vertices v1 and v2 belong to the same bridge of H in G (H is a subgraph of G)
if there is a walk W between nodes so that each intermediate vertex of walk
W does not belong to H . For a given subgraph H of G there can be several
bridges. Especially in the case of planar graphs, if H is a cycle bridges are
either inner or outer bridges. An attachment of bridge B is the set of vertices
belonging to both B and H .

Let H̃ be a planar embedding of H and B some bridge. By F (B, H̃) we mean
the set of faces where a bridge can be drawn without violation the planarity.

Algorithm 5, by Demoucron, Malgrange and Pertuiset from 1964, can be used
to check planarity of given graph. The proof that the presented algorithm in-
deed works can be found e.g. in [BM76].

B.5 Node Colouring

The node colouring is a process where each node is given a colour (a labelled
graph) so that no adjacent nodes have the same colour. A graph is said to be
k-colourable if there exists a colouring with at most k colours. Generally, the
node colouring problem is to find a legal colouring with minimum number of
colours. Also this problem is known to be NP-complete. The minimum num-
ber of colours for which a legal colouring exists is called the chromatic number
of graph. For example K5 is clearly 5-colourable while K3,3 is 2-colourable.

There is a famous theorem for colouring the planar graphs:

Theorem B.2 (Four-colour theorem) Every planar graph is four-colourable.
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Algorithm 5 Planarity check of graph (Demoucron, Malgrange and Pertuiset,
1964)

let G1 be a cycle in G
find a planar embedding of G̃1 of G1

i← 1
while E(G)\E(Gi) 6= ∅ do

determine all bridges Bj on Gi in G
for all Bj do

find the set F (Bj , G̃i)
end for
if there is a bridge B for which F (B, G̃i) = ∅ then

stop as G is non-planar
else if there exists bridge B such that |F (B, G̃i)| = 1 then

let {f} = F (B, G̃i)
else

let B be any bridge and f any face such that f ∈ F (B, G̃i)
end if
choose a path P − i ⊆ B connection two vertices of attachment of B to Gi

Gi+1 ← Gi ∪ Pi

obtain a planar embedding G̃i+1 by drawing the Pi in the face f of G̃i

i← i + 1
end while

The four colour theorem states that any planar map is four-colourable. By
colouring a planar map we mean assigning each area a colour such that no
areas sharing non-zero length border have same colour. Clearly colouring a
planar map is equivalent to colouring a planar graph The theorem was first
proven by Kenneth Appel and Wolfgang Haken in 1976. The proof of the the-
orem is long and was done with the aid of long computers runs. A compre-
hensive introduction to the theorem and its interesting history can be found
from [SK77, AH77].

Over the years several algorithms have been proposed to find a suboptimal
colouring for an arbitrary graph [Mit76, Bré79, HdW87]. A simple greedy al-
gorithm is described in Algorithm 6. The algorithm simply gives each node

Figure B.3: A sample planar map coloured with four colours.
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Figure B.4: A simple planar graph and its orientable cycle double cover.

the smallest legal colour in some order. Usually a good order is such that the
nodes are sorted in the order of their degrees.

Algorithm 6 Greedy node colouring algorithm
let G = (V, E) be an arbitrary graph, where V = {v1, v2, . . . , vn}
c1 ← 1
V ′ = {v1}
for i = 2 to n do

V ′ ← V ′ ∪ {vi}
ci ← mink {c1, c2, . . . , ci−1, k} is legal colouring of subgraph V ′

end for

B.6 Cycle Double Cover Conjecture

Definition B.2 A cycle double cover (CDC) of given graph is a collection of cycles
such that every edge is included exactly twice.

Definition B.3 An orientable cycle double cover (OCDC) is such a CDC that each
cycle can be given a direction and every edge is passed in both directions.

The existence of CDC and OCDC for any bridgeless graph have been con-
jectured but not proven yet. For any planar graph it is easy to find OCDC
(and CDC) by forming the cycles so that every face of the graph is walked in
the anti-clockwise direction and one additional cycle going around the whole
graph is walked in the clockwise direction (see Fig. B.4).
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Markov Decision Processes

The theory of Markov decision processes (MDP) is fundamental to the analysis
of many stochastic systems. It considers a stochastic system where decisions
are made and the aim is to find an optimal strategy in some sense. In this
chapter a brief introduction to the MDP theory with main results is given. A
more thorough treatment can be found for example in [Tij94, Dzi97].

The contents of this appendix are briefly the following. First in Section C.1 a
Markov chain is described, and then its continuous time counterpart Markov
process is introduced briefly in Section C.2 with some main results important
in the context of this thesis. In Section C.3 a Poisson process is presented,
then in Section C.4 MDPs are presented, and finally in Section C.5 Howard’s
equations solving the average revenue of MDP with fixed policy are presented,
followed by the description of the Policy Iteration used to find the optimal
policy for given MDP.

C.1 Markov Chain

Stochastic processes can generally be classified into two categories, namely
discrete time and continuous time processes [Law95, Coo81, Saa83]. Here we
assume that the set of states where the system can be is finite or at least count-
able. A discrete time Markov process (or Markov chain) is a stochastic process
where the next state at time t + 1 depends only on its current state at time t.
This memoryless property is fundamental to Markov processes. Formally, let Xt

be the state of the process at time t, then

P{Xt+1 = x|Xt = xt, Xt−1 = xt−1, . . .} = P{Xt+1 = x|Xt = xt}.
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The Markov chain is defined by a transition probability matrix P,

P =


p1,1 p1,2 . . .

p2,1 p2,2 . . .
...

... . . .


 ,

where pi,j is the probability that the system being in state i moves to the state
j in the next step. So the row sums

∑
j pi,j are equal to one.

The steady state probability distribution, denoted by a row vector π, satisfies
the following equation,

π = πP,

which together with the normalization requirement,
∑

i πi = 1, defines the
steady state distribution of the system.

C.2 Markov Process

The continuous time Markov process is defined similarly as Markov chains.
Let p(j, t; i, s) be the conditional probability that the system will be in state j
at time t if it was in state i at time s. Then the system is said to be a Markov
process if the Chapman-Kolmogorov equations hold:

p(j, t; i, s) =
∑

k

p(j, t; k, u) p(k, u; i, s),

where s < u < y, i, j ∈ S and S is the set of possible states. A similar mem-
oryless condition holds also for the continuous time Markov process, i.e. the
future of the system depends only on the current state.

The infinitesimal generator or transition rate matrix Q is

Q =


q1,1 q1,2 . . .

q2,1 q2,2 . . .
...

... . . .


 ,

where qi,i = −qi = −∑j 6=i qi,j . It defines the transition probabilities per time
unit. The state probability distribution satisfies the differential equation

d

dt
π(t) = π(t)Q,

where π(t) defines the probability distribution at time t.

The steady state distribution π of Markov process defined by matrix Q can
obtained from

πQ = 0.

The sojourn times in each state i are exponentially distributed with mean τi =

1/
∑
j 6=i

qi,j.
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C.3 Poisson Process

The Poisson process is probably the most used traffic (arrival) model in data
communications as well as in many other areas. The Poisson process is a pure
birth process with Markovian property. In this context we talk about arrivals.
Briefly, the probability of an arrival during a small time interval of ∆t is pro-
portional to the length of time interval, i.e.

P{one arrival during ∆t} = λ ·∆t + o(t),

where constant λ is called arrival rate. It follows that the inter arrival times
are exponentially distributed with parameter λ. This can also be expressed
by saying that during a fixed length time interval t the number of arrivals Nt

obeys Poisson distribution with parameter λt,

P{i arrivals during time t} = P{Nt = i} =
(λt)i

i!
e−λt.

C.4 MDP and Policy

A Markov decision process (MDP) is a stochastic process on which a user has
some control, i.e. the user can make decisions at certain points of process. The
set of possible decisions depends on the current state of the system, but also
on the event that occurred. Denote with S the system state space and with K
the set of possible events.

The decision in each state i for each possible event k defines the policy α, and
vice versa. The Markov property guarantees that the future of the system (in-
cluding events) depends only on the current state of the system. In particular,
given the current state, the decisions made in the past have no effect on the
future. Hence, it is natural to assume that the policy is not time dependent.

The decision for the input pair (i, k) may involve (or generate):

1. a cost, e.g. blocking of type k call implies some cost

2. a transition from state i to another state j, where pair (i, k) defines the set
of possible new states

Assume that the user has to make a decision in state i for certain event k. Let
the set Ai,k contain all the possible new states, and if one possible decision is
to stay in the same state, then also i ∈ Ai,k. Furthermore, let each decision
have a unique immediate cost fi,j(k), which is zero if the decision itself costs
nothing. Note that fi,i(k) denotes the immediate cost of a decision that leaves
the system in state i.
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The new state j identifies the action since, if there were several actions leading
to the same state j, it is clearly sufficient to consider only the most profitable
among them, as the past decisions have no affect on the future. Hence, the
policy α picks one state j from each Ai,k, i.e. it can be written that,

α : S × K → S, where α(i, k) ∈ Ai,k ⊆ S ∀ i, k.

Once the policy α is fixed the resulting stochastic process is a Markov process
(or Markov chain) Xt with some cost rate in each state (or revenue rate). The
problem is to find the optimal policy α which minimizes the expected cost
rate (or maximizes revenue rate). Note that for a fixed policy α the resulting
Markov process (or Markov chain) no longer contain events k ∈ K explicitly.

C.4.1 Cost Model for Markov Chain

Denote the transition probabilities of a given Markov chain under policy α
with pij(α). The steady state distribution πi(α), defined by the transition prob-
abilities, defines the long time average being in each state i, i.e. during N
rounds, where N is large, the Markov chain resides in state i on average N ·
πi(α) times .

Basically the costs in a Markov chain can be placed in

1. transitions, i.e. each transition i→ j has unique cost cij , or

2. visits, i.e. every visit to state i costs ci.

Furthermore, assume that in either case the policy determines only the tran-
sition probabilities but not the fundamental costs cij or ci. Here it is assumed
that costs are deterministic, otherwise their expected values could be used.
This leads to three different possible definitions for the so called immediate
cost of state i (or reward of state i):

1. visit costs, when costs are defined per visit, i.e.

ri(α) = ri = ci. (C.1)

2. pre-visit costs, the average cost from transition to state i under policy α,
i.e.

r
(−)
i (α) :=

∑
j πj(α) · pji(α) · cji∑

j πj(α) · pji(α)
. (C.2)

3. post-visit costs, the average cost from transition to the next state from state
i under policy α, i.e.

r
(+)
i (α) :=

∑
j

pij(α) · cij . (C.3)
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Note that in the case of visit costs the immediate cost of state does not depend
on the policy. Nonetheless, each alternative definition attaches a certain cost
for visit in each state and optimal policy minimizes the number of visits in
states weighted with immediate cost. Hence, the long time average cost per
round r(α) is

r(α) =
∑

i

πi(α) · ri, or (C.4)

r(α) =
∑

i

πi(α) · r(−)
i (α) =

∑
i

πi(α) · r(+)
i (α). (C.5)

The number of arrivals to state i is equal to the visits to state i, and furthermore
is equal to the number of departures from state i. If it holds that

ci(α) =
∑

j

pi,j · cij,

then the long time average cost per round is the same in (C.4) and (C.5). Thus,
the sources of costs can be placed different ways still leading to the same op-
timal policy α. Placement of costs, however, leads to different relative values
when solving Howard’s equations and formulation of policy iteration.

C.4.2 Cost Model for Markov Processes

A Markov process is a continuous time process unlike a Markov chain. Also
the costs can originate from even more numerous sources than in the case of a
Markov chain. Namely,

1. visit costs, each visit in state i costs ci.

2. transition costs, each transition i→ j costs cij .

3. cost rate, the costs are incurred in rate r′i while the system is in state i.

No matter how the fundamental costs are defined, it is easy to obtain equiva-
lent (total) cost rate in state i in the following way. Let the average time spent
in state i be τi = πi · T . Then, the costs incurred in state i are on average

τiri = τir
′
i +
∑
j 6=i

τiqijcij + τiqici.

Hence, the average cost rate in state i is

ri = r′i +
∑
j 6=i

qijcij + qici.

Assuming the fundamental costs are policy independent, the equation be-
comes

ri(α) = r′i +
∑
j 6=i

qij(α) · cij + qi(α) · ci.
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Thus, when the steady state distribution πi of the system is obtained, the aver-
age cost rate is simply

r(α) =
∑

i

ri(α) · πi(α).

C.5 Howard’s Equations

Howard’s equations, presented in the following sections, provide a system-
atic procedure to obtain the average revenue without solving the steady state
probability distribution of the system.

C.5.1 Discrete Time Howard’s Equations

The relative value (sometimes called also the relative cost) of state i, denoted
with vi, is the difference in the expected costs between a process that starts
from state i and another process that starts from the equilibrium. Formally,

vi =

∞∑
t=0

(E[rXt|X0 = i]− r)

=
∞∑

t=0

(
n∑

j=1

P{Xt = j|X0 = i}rj − r

)

=

∞∑
t=0

n∑
j=1

(P{Xt = j|X0 = i} − πj) rj,

which can be assumed to be finite, as

E[rXt|X0 = i]
t→∞→ r ∀ i.

The difference in costs between the two processes is essentially collected dur-
ing the transition phase, when the system tends towards the equilibrium from
the initial state i.

The placement of the costs (pre, visit or post, equations (C.1), (C.2) and (C.3))
defines the immediate costs ri.

The discrete time Howard’s equation for state i is

vi(α) = ri(α)− r(α) +
∑

j

pij(α) · vj(α). (C.6)

The formula can be explained in the following way. In the current state, be-
fore the departure, the immediate relative value is ri− r. After that the system
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moves to state j with probability of pij and from that point onwards the in-
curred relative values are vj (due to memoryless property). Taking the sum
over j includes all the possible cases. Formally,

vi =

∞∑
t=0

(E[rXt|X0 = i]− r)

= ri − r +
∞∑

t=1

(E[rXt|X0 = i]− r)

= ri − r +
∞∑

t=1

((∑
j

pijE[rXt |X1 = j]

)
− r

)

= ri − r +
∑

j

pij

∞∑
t=1

(E[rXt |X1 = j]− r)

= ri − r +
∑

j

pijvj .

Hence, there are N linear equations and N + 1 unknown variables. Any of the
relative values vi can be fixed to be 0 (or any other finite value). If a constant
C is added to each relative value, they still satisfy equation (C.6). Hence, a
constant offset in relative costs {vi} has no effect on r or the optimal policy.
Once one of the relative values is fixed we are left with N unknown variables
so that the interesting quantity, the average relative cost r, can be obtained.

C.5.2 Continuous Time Howard’s Equations

Howard’s equations can also be used with continuous time processes. Denote
the relative costs again with vi, i.e.

vi = lim
T→∞

∫ T

0

(E[rXt|X0 = i]− r) dt,

where r is the average cost rate in the long run and E[rXt |X0 = i] is the expected
cost rate at time t when the process starts initially from state i (see Fig. C.1).
We can assume that the above limit exists and is finite for each i. If actual costs
are defined by transitions or visits in states, it is straightforward to combine
them to cost rates and obtain an equivalent Markov process with cost rates as
presented in previous section.

We proceed by considering the embedded Markov chain. The transition prob-
abilities of the embedded Markov chain are

pij =

{ qij

qi
, when i 6= j,

0, when i = j.

Assume, that while the system is in state i the rate at which costs are incurred
is ri. Then the average incurred cost while staying in the current state, i.e. the
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Figure C.1: Illustration of relative costs vi of a continuous time MDP.

immediate cost in embedded Markov chain, is

ri − r

qi
.

Substituting these to (C.6), gives

vi =
ri − r

qi

+
∑
j 6=i

qij

qi

vj .

Recalling that qi =
∑

j 6=i qij , we get the continuous time Howard’s equations:

ri − r +
∑
j 6=i

qij(vj − vi) = 0, ∀ i (C.7)

Since qii = −∑j 6=i qij , the following alternative formulation for Howard’s
equations is obtained,

ri − r +
∑

j

qijvj = 0, ∀ i (C.8)

As in the discrete time case, an arbitrary relative cost vi can be fixed, after
which the rest of the relative costs and the average cost rate r can be solved.

Equation (C.8) can be explained in the following way. The difference in income
rates in the current state equals to ri−r, and the summation gives the transition
rates to other states weighted with the appropriate relative values.

C.6 Policy Iteration

Next a systematic procedure to obtain the optimal policy iteratively is pre-
sented. The procedure starts from an arbitrary initial policy α and in each
round a new better policy is obtained by using the so called policy improve-
ment step [Dzi97, Tij94].

Recall that the relative values vi (presented in the context of Howard’s equa-
tions) represent the difference in the expected future costs for the system start-
ing from certain state i rather than from the equilibrium. The decisions the
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Figure C.2: The two possible decision depicted. After the decision is made (and paid
the immediate cost) the future (relative) costs, assuming policy α, are given by vj1

and vj2 accordingly.

user makes defines the policy. Due to the memoryless property the policy can
also be assumed to be time independent, i.e. at the same state the policy makes
always the same decision.

As presented before, the policy α defines decisions in each state i for every
event k. Furthermore, the decision made may generate some cost and a transi-
tion. The setAi,k contains possible new states when type k event occurs in state
i. Note that it contains also the current state i if one of the decisions is to stay
in the same state. As stated before, a policy is explicitly defined by the state
the system is after the decision. Denote with fi,j(k) the cost of the decision to
move to state j when type k event occurs in state i. This corresponds to the
transition cost cij presented in C.4.2 with an additional parameter k. Formally,
the mapping

α : S ×K → S,

together with constraint α(i, k) ∈ Ai,k, defines a policy.

C.6.1 Policy Iteration I

Assume that we have an arbitrary policy α. While being in state i an event k
occurs, so that a decision or an action should be made. The action ai,k to be
taken should be the one which minimizes the expected future costs. Assume
that, once the action is taken, the system reverts back to the standard policy α.
Then the optimal action is clearly

ai,k = arg min
j∈Ai,k

{fi,j(k) + vj(α)} , ∀ i, k, (C.9)

The equation defines the action for each possible state i and event k, i.e. a new
policy α′. For the original policy α the expected relative future costs are known.
So, taking a minimum over all the possible actions, a better or at least equal
policy is obtained. Repeating the iteration the optimal policy will be finally
reached. The policy iteration algorithm is presented in Algorithm 7. Note that
the same algorithm holds for the discrete and continuous MDP cases.

109



C. MARKOV DECISION PROCESSES

Algorithm 7 Policy iteration
Let α be an arbitrary policy
loop

Solve Howard’s equations for the current policy α⇒ relative values vi and
the average revenue rate r for the current policy
if Average revenue rate r did not improve then

break
end if
Determine a new policy α′, for each state from: arg min

j∈Ai,k

{fi,j + vj} ,

which defines the action to be taken in each state i when type k event
occurs.
α← α′

end loop

C.6.2 Policy Iteration II

The policy iteration step can be expressed in another way, too. Namely, con-
sider that the alternative policy is used until the next transition occurs. Then
the new policy is defined by the following equation:

arg min
α′

{
ri(α

′) +
∑

j

qij(α
′) · vj(α)

}
, ∀ i, (C.10)

which is similar to Howard’s equation (C.8) except that the average cost rate r,
being just a constant factor, is dropped, and the cost rate ri and the transition
intensity matrix Q are obtained for different policy than the relative costs vi.
By taking arg min over all the possible “temporary” policies α′, we get a new
and never worse policy. Again, the policy improvement step is repeated until
the iteration step does not change the policy (or the average cost r does not
decrease if there are two or more optimal policies).
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Appendix D

Network Simulator

Network simulator program, “Verkko”, is used to simulate the routing and
wavelength assignment problems in fully optical networks. The program is
written from scratch in Ansi C language, and the source code currently con-
tains about 10000 lines.

The program is command line driven and uses auxiliary files which define the
structure of the physical network as well as the offered traffic. Based on this
information the program simulates the behaviour of the given optical network
and reports blocking probabilities and cumulative costs per traffic class. Sev-
eral RWA algorithms are built in the simulator and adding a new algorithm is
a quite straightforward task. Special attention was paid to the data structures
and the memory handling routines in order to optimize the simulation times1.

D.1 Routes

Both static and dynamic traffic cases use pre-calculated routes, i.e. for each
node pair a set of route candidates are stored in advance in linked lists [Knu68].
A linked list is a dynamic data structure which suits well to describe routes of
different lengths. Exception to this rule is the adaptive unconstrained routing
(AUR) algorithms, which determine the route dynamically based on the cur-
rent state of the network. The routing parameters define what kind of routes
are accepted and how many. The possible parameters are the following (each
is of restrictive type):

• ∆l, this parameter limits the number of extra (optical) hops the route can
make when compared to shortest possible route. If ∆l is zero only the
shortest paths are included.

1An important factor when using the first policy iteration.
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• rmax, this parameter limits the total number of route candidates. If more
than rmax routes, then the shortest paths are included.

• maxtest, this parameter defines the maximum alternative routes actually
checked when the first policy iteration is applied (see Section 4.5).

D.2 Static Traffic

The configuration of the network is split to two subproblems. First the routes
ares fixed and then the wavelengths are assigned. The problem can be divided
to two categories:

• Single-fibre case:

– Graph node colouring approach, many algorithms presented in the
literature implemented.

– Handles the WIXC case appropriately by splitting the route to sub
routes and assigning a wavelength to each hop independently

• Multi-fibre case

– Arbitrary number of fibres in any link

– WIXC case as in the single fibre case, i.e. each optical hop is assigned
separately.

– Only one algorithm implemented: simple greedy algorithm assigns
wavelengths after routing

D.3 Dynamic Traffic

• Calls arrive with rate λi (Poisson) and call durations follow the exponen-
tial distribution with mean 1/µi, where i is the traffic class.

• A flag defines whether the duration of incoming connection request is
known or not.

• Supports saving/loading of arrivals to/from an external file

• Currently implemented algorithms are basic, porder, pcolor, pcolor, ll, iter-
ation and reroute.

– basic, tries every wavelength with every route in that order

– porder, tries every route with every wavelength in that order

– pcolor, tries every route in order of the most used wavelengths first
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– lpcolor, minimizes primarily the length of the route, and secondarily
uses the most used wavelength

– reroute, tries first using basic algorithm and if that fails all connec-
tions are rerouted

• Also adaptive versions (AUR): pack, spread, random, exhaustive and fixed
order

• Notes:

– basic, porder and pcolor algorithms do not handle WIXC case yet

– reroute algorithm uses static traffic routines and has no limitations

D.4 Verification of Simulator Software

The simulator sources consist of many thousands lines of C-code, which means
that there is very likely more than one bug hiding. Hence, during the program
development it is important to frequently run tests to find possible problems
to be able to correct them immediately.

The tests run can be divided into the following categories:

• C-compiler warnings must be fixed, this merely a sign of a good pro-
gramming style. With GNU ( [Sta84]) gcc-compiler a -Wall option gives
satisfactory reports about likely errors.

• Test runs with simple cases that can be solved analytically. As the gen-
eral problem is clearly impossible to be solved analytically, some simple
cases can still be calculated and simulated results can be compared to
them. For example, a two node network behaves exactly like a normal
M/M/m/m queue, where m is number of channels available on link(s).

• The first policy iteration approach parameters can be estimated by tweak-
ing the costs of rejected call to zero. Then every call should be rejected, as
it costs nothing to reject it. However, due to the simulation noise, wrong
decisions are sometimes made.

• Simulation runs with different parameter sets that should give the same
results (scaling time, dividing the iteration to n sub periods etc.).

• Comparisons with results from the published papers. Both published
and own results contain simulation noise, but the order of the results
should match.
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Listing D.1: Example sections defining the physical network.
#NODES
Hki 0 0 o
Espoo �0.1 0 o
Vantaa 0 0 . 1 o
Turku �0.8 0 o
Vaasa �1.2 2 o
Tre �0.5 0 . 8 o
J k l 0 . 3 1 . 7 o
Lpr 1 0 . 9 o
Joensuu 1 . 2 2 . 5 o
Kuopio 0 . 7 2 . 5 o
Oulu 0 3 . 5 o
#END

#LINKS
Hki Espoo 1
Hki Vantaa 1
Espoo Vantaa 1
Espoo Turku 1
Vantaa Tre 1
Vantaa Lpr 1
Turku Vaasa 1
Tre J k l 1
Tre Turku 1
Lpr Joensuu 1
Kuopio Joensuu 1
J k l Kuopio 1
Kuopio Oulu 1
Oulu Vaasa 1
#END

D.5 Network File Formats

The network file consists of two sections. The first part NODES defines the
network nodes and the second section LINKS defines the links between nodes.
Each line of NODES section contains one entry:

<name> <x coordinate> <y coordinate> <type>

The coordinates can be used to present graphical picture of the network, but
they have no effect to actual problem nor simulations. The type of the node
can be either

o normal, no wavelength conversions, or

x wavelength conversion capable node.

Each section is ended with #END keyword. The second section LINKS defines
the links between the network nodes:

<node 1> <node 2> <number of fibres>

An example network definition is presented in Listing D.1.
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Listing D.2: Example section defining the traffic (2 classes).
#TRAFFIC 1

#POISSON normal
Hki Espoo 2 . 0 1 . 0 1.0
Hki Tre 1 . 0 1 . 0 1.0
Espoo Tre 1 . 0 1 . 0 1.0
#END

#POISSON known end
Hki Espoo 0 . 5 1 . 0 2.0
Espoo Tre 0 . 2 1 . 0 2.0
#END

#END

D.5.1 The Traffic File Format

The traffic file defines the offered traffic in the dynamic traffic case. If it is
not specified, uniform traffic is assumed among all possible node pairs. Each
traffic class defines a node pair, arrival intensity (Poisson traffic), average con-
nection duration (exponential distribution) and a weight factor (cost of lost
call).

The file starts with the header:

#TRAFFIC 1

The word TRAFFIC refers to the traffic definitions and 1 is the version number.
After that comes the sections of different traffic types.

#POISSON normal
#POISSON known_end

Currently the only traffic type is Poisson traffic with either normal type which
means the ending time of call is unknown, or known end type which means
that once a connection request arrives its duration becomes also known. The
duration is still drawn from the exponential distribution.

After header each line contains data for one traffic class:

<node 1> <node 2> <lambda> <mu> <weight>

Note that connections are assumed to be bidirectional always. The end of each
section is marked with #END keyword. An example traffic section is presented
in Listing D.2.
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[HV00b] Esa Hyytiä and Jorma Virtamo. Dynamic routing and wave-
length assignment using first policy iteration, inhomogeneous
traffic case. In P&QNet2000, the International Conference on Perfor-
mance and QoS of Next Generation Networking, Nagoya, Japan, pages
301–316, November 2000.

[ITU98] ITU-T. G.692, Optical interfaces for multichannel systems with optical
amplifiers, October 1998.
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