
Influence of Link State Update Algorithms on the Cost of QoS

Path Computations
Gonzalo Camarillo

Advanced Signalling Research Laboratory
Ericsson, FIN-02420 Jorvas, Finland
Gonzalo.Camarillo@ericsson.com

Abstract
Routers performing QoS routing need to know the state
of the links in the network in order to find appropriate
paths. The mechanism used to trigger link state updates
influences the routing performance a great deal.

Traditionally periodical link updated triggers have been
employed. Using alternative link update triggers, such as
threshold based or class based, reduces the processing
in the routers and increases the performance of the
system. This performance can be measured by the
throughput of the sources transmitting real time traffic.

1 Introduction
The Integrated services architecture [1] proposes RSVP
[2] as the resource reservation protocol. RSVP reserves
resources along a path taking into consideration QoS
parameters. Before resource reservation can be
performed it is necessary to find a path that fulfils the
QoS requirements of the end systems willing to
communicate. In order to find paths with QoS
constraints it is necessary a routing protocol that contains
QoS metrics. QOSPF [3] adds some extensions to OSPF
[4] to provide QoS path discovery.

QOSPF, as OSPF, is a link state routing protocol. In link
state routing protocols every node has a global picture of
the network and calculates paths based on it. The state of
the links of the network has to be known in order to find
an appropriate path. The requirements imposed on the
path might be bandwidth, delay or any QoS parameter
supported by the routing protocol.

The network conditions are changing continuously and
so the state of the links does. The information that
routers have must be as accurate as possible in order to
perform correct path calculations. There are various
algorithms that can be used for this purpose. Periodical
updates, threshold based updates and class based updates
are studied in this paper.

On-demand path calculation is another option that might
be considered, but it does not suit networks with high
QoS request rate. The processing overhead is too large to

be implemented successfully in networks with a high
level of QoS traffic.

The rest of this paper is organized as follows. In section
2, different update algorithms are presented. Section 3
describes the simulation environment and the metrics
chosen to measure the results. Section 4 outlines the
results obtained and their consequences. Finally section
5 concludes the paper.

2 Link state update algorithms
Alternatives to on-demand path calculations are based on
path pre-computation [5]. Paths to destinations are
calculates independently on the requests for connections.
Thus, when a request arrives, it is not necessary to
calculate at that point of time a feasible path. The path
has been computed before. Different algorithms [6]
propose different triggers for the link state updates.

The most simple trigger algorithm consists of employing
periodical updates. A timer is defined and every time it
expires an update is triggered.

When threshold based update policy is used a threshold
is defined. This threshold represents a percentage of
bandwidth. If the bandwidth variation in a link since last
update goes beyond this percentage a link update is
performed.

There are two kinds of class based updates: equal class
based and exponential class based. In both the bandwidth
of the link is divided into different intervals called
classes. If the current available bandwidth changes the
class it belongs to an update is triggered. The size of all
the intervals is the same in equal class based: (0,B),
(B,2B)… In exponential class based the size of the
classes grows geometrically by the factor f: (0,B), (B,
(f+1)B), ((f+1)B, (f2+f+1)B)…

3 Simulation Environment and
metrics chosen

A simulator has been developed at HUT (Helsinki
University of Technology) [7]. QRS [8] (QoS based
Routing Simulator) is based on MaRS (Maryland
Routing Simulator) [9]. [10] shows how to get and install
QRS.

QRS implements the four algorithms described in the
previous section: periodical, threshold based, equal class
based and exponential class based. The simulations
described in section 4 have been carried out using QRS
over different topologies: matrixes of different sizes and
trees of different sizes. The following figures show the
four different topologies employed.

1 2

4

3

7

8 9

56

Figure 1 : Matrix with 9 nodes

1 2

4

3

7

8 9

56

11

10

12

18

17

19

16 1415 13 20

25 2324 22 21

Figure 2 : Matrix with 25 nodes

In the matrix with nine nodes the traffic is generated in
node one and terminated in node 5. In the matrix with 25
nodes the traffic flow goes from node 1 to node 21. The
configurations files used with QRS can be found at [11]
and [12] respectively.

1

2

43

78

9

5

6

Figure 3 : Tree with 9 nodes

1

2

43

58

9

7

6 1213

14 15

16

11 10

Figure 4 : Tree with 16 nodes

In the tree with 9 nodes there is traffic between nodes 1
and 6. In the larger tree there is traffic between nodes 1
and 16. The configurations files used with QRS can be
found at [13] and [14] respectively.

In order to study the performance/cost of the different
algorithms throughput and time consumed by QOSPF
have been chosen as metrics for these simulations. The
throughput is measured counting the number of packets
received by the destination node. The cost is the sum of
the different times employed by OSPF in each node.
Next section shows the result of the simulations.

4 Simulation results
In order to compare the performance/cost of the different
algorithms 12 real-time sources has been installed in the
network. They generate traffic with different
characteristics. The traffic profile is defined in the
configuration files pointed in the previous section. A
source of best effort traffic loads the network with
background traffic.

The parameters used for the algorithms are contained
also in the configuration files. Periodical updates were
performed every 10 ms. In the threshold based update
algorithm 0.1% was used as a threshold. For the class
based algorithms 21 classes of size 0.01 were used. The
factor ‘f’ of the exponential class based algorithm was
set to 2. All the simulations were running for 20 seconds.
The following tables show the results of this simulation
in different topologies.

Table 1 : Matrix with 9 nodes [15-18], [19-22]

Algorithm Throughput
Real-time/best effort

Cost (µs)

Periodical 190 / 3002 packets 11415000

Threshold
based

1973 / 1424 packets 7677000

Equal class
based

2715 / 1702 packets 9859000

Exponential
class based

1896 / 1981 packets 7342500

Table 2 : Matrix with 25 nodes [23-26], [27-30]

Algorithm Throughput Cost (µs)

Periodical 165 / 670 packets 31381500

Threshold
based

995 / 2269 packets 36024000

Equal class
based

712 / 2237 packets 36093000

Exponential
class based

1999 / 1633 packets 36073500

Table 3 : Tree with 9 nodes [31-34], [35-38]

Algorithm Throughput Cost (µs)

Periodical 2015 / 598 packets 10149000

Threshold
based

1968 / 715 packets 5236500

Equal class
based

1954 / 726 packets 6219000

Exponential
class based

1995 / 689 packets 4986000

Table 4 : Tree with 16 nodes [39-42], [43-46]

Algorithm Throughput Cost (µs)

Periodical 1525 / 470 packets 16822500

Threshold
based

1658 / 945 packets 14284500

Equal class
based

1727 / 874 packets 14388700

Exponential
class based

1754 / 850 packets 13855500

In the title of every table two references are given. They
contain the output of the simulation. The fist reference
contains the configuration file with the values of all the
parameters. The second reference contains data about the
throughput of the system in different moments of the
simulation.

The following graphics show the same data as the tables.
With this graphical representation it is easier to compare
the algorithms.

Performance Cost

Periodical

Threshold

Equal class

Exponential class

 Figure 3 : Matrix with 9 nodes

Performance Cost

Periodical

Threshold

Equal class

Exponential class

 Figure 4 : Matrix with 25 nodes

Performance Cost

Periodical

Threshold

Equal class

Exponential class

 Figure 5 : Tree with 9 nodes

Performance Cost

Periodical

Threshold

Equal class

Exponential class

 Figure 6 : Tree with 16 nodes

The periodical algorithm performs extremely badly in
matrix topologies. Its cost is comparable to the other
algorithms, but its performance is much lower. In tree
topologies the periodical algorithm can reach a similar
performance to the rest of algorithms, but the processing
cost is higher. Therefore, the use of alternative
algorithms helps to reduce the cost of QoS routing. Thus,
with the same cost alternative algorithms achieve a better
performance.

The three alternative algorithms behave in a very similar
manner over tree topologies. However, the exponential
class based algorithm performs slightly better in both
large and small trees. Therefore, the gain of using one
algorithm instead of another in tree topologies is almost
negligible.

These simulations have been done using the same
parameters for the algorithms. These parameters can be
also modified in the simulator in order to study their
influence. In the large matrix the algorithm performing
the best was the exponential classed based. However, if
the class size is multiplied by ten, the equal class based
performs better.

Table 4 : Matrix with 25 nodes [47-48], [49-50]

Algorithm Throughput Cost (µs)

Equal class
based

2026 / 1537 packets 35899500

Exponential
class based

1759 / 1968 packets 36088500

Performance Cost

Equal class

Exponential class

 Figure 6 : Matrix with 9 nodes

The following table shows the results of increasing in the
same was the class size in the small matrix.

Table 4 : Matrix with 9 nodes [51-52], [53-54]

Algorithm Throughput Cost (µs)

Equal class
based

2027 / 652 packets 6451500

Exponential
class based

2046 / 633 packets 6264000

Performance Cost

Equal class

Exponential class

 Figure 6 : Matrix with 9 nodes

These results show that exponential class based
algorithms behave similar to equal class based
algorithms. However, when the available bandwidth in
the links varies constantly the exponential class based
algorithms can reduce the cost. When the available
bandwidth is high the updates are triggered less often
and some processing power is saved. In situations where
the available is scarce the behavior of both algorithms is
practically the same.

5 Conclusions
Triggering link updates in the proper moment helps rise
the performance of a system and reduce the QoS routing
processing cost. On demand triggers and periodical
triggers are far from being optimal methods.

Threshold based updates and equal class based updates
behave properly when the available bandwidth level is
close to constant and the parameters of the algorithms
are adjusted according to that level. If the level of
available bandwidth varies a great deal in time
exponential class based updates perform better. When
the available bandwidth is high the number of updates is
reduced. When the available bandwidth is low the
updates are triggered more often. This gives this
algorithm more flexibility. Exponential class based
updates fulfil better the requirements of systems with
variable load levels.

6 Acronyms
MaRS: Maryland Routing Simulator
OSPF: Open Shortest Path First
QoS: Quality of Service
QOSPF: Open Shortest Path First with QoS extensions
QRS: QoS based Routing Simulator
RSVP: Resource ReSerVation Protocol

References
[1] Braden R., Clark D., Shenker S., “Integrated

Services in the Internet Architecture: an Overview”,
RFC 1633. June 1994.

[2] Braden R., Zhang L., Berson S., Herzog S., Jamin
S., “Resource ReSerVation Protocol (RSVP)”, RFC
2205. September 1997.

[3] Apostopoulos G., Guérin R., Kamat S., Orda
A., Przygienda T., Williams D., “QoS Routing
Mechanisms and OSPF Extensions”, RFC
2676. August 1999.

[4] Moy J., “OSPF version 2”, RFC 2328. April 1998.

[5] Apostolopoulos G., Tripathi S., “On the
Effectiveness of Path-Pre-Computation in reducing
the Processing Cost of On-Demand QoS Path
Computation”, 0-8186-8538-7/98. IEEE 1998.

[6] Apostolopoulos G, Guerin R., Kamat S., Tripathi S.,
“Quality of Service Based Routing: A Performance
Perspective”,
http://www.tct.hut.fi/~pgzhang/S130/papers/Cost/A
postolopoulos_Perspectives_QoSR.ps

[7] http://www.hut.fi

[8] Zhang P., Kantola R., “Design and Implementation
of QRS (QoS_based Routing Simulator)”,
http://www.tct.hut.fi/~pgzhang/QRS/QRS10/QRS_d
esign.doc

[9] Alaettinoglu C., Dussa-Zieger K., Matta Ibrahim,
Shankar A. “MaRS (Maryland Routing Simulator)
Version 1.0 User’s Manual”,
http://www.isi.edu/~cengiz/publications

[10] Zhang P., Kantola R., “QRS (QoS_based Routing
Simulator) User’s manual”,
http://www.tct.hut.fi/~pgzhang/QRS/QRS10/QRS_
manual.doc

[11] http://www.hut.fi/~gonzalo/documents/simulations/
matrix3x3.cfg

[12] http://www.hut.fi/~gonzalo/documents/simulations/
matrix5x5.cfg

[13] http://www.hut.fi/~gonzalo/documents/simulations/t
ree9.cfg

[14] http://www.hut.fi/~gonzalo/documents/simulations/t
ree16.cfg

[15] http://www.hut.fi/~gonzalo/documents/simulations/
m9_s_0

[16] http://www.hut.fi/~gonzalo/documents/simulations/
m9_s_1

[17] http://www.hut.fi/~gonzalo/documents/simulations/
m9_s_2

[18] http://www.hut.fi/~gonzalo/documents/simulations/
m9_s_3

[19] http://www.hut.fi/~gonzalo/documents/simulations/
m9_l_0

[20] http://www.hut.fi/~gonzalo/documents/simulations/
m9_l_1

[21] http://www.hut.fi/~gonzalo/documents/simulations/
m9_l_2

[22] http://www.hut.fi/~gonzalo/documents/simulations/
m9_l_3

[23] http://www.hut.fi/~gonzalo/documents/simulations/
m25_s_0

[24] http://www.hut.fi/~gonzalo/documents/simulations/
m25_s_1

[25] http://www.hut.fi/~gonzalo/documents/simulations/
m25_s_2

[26] http://www.hut.fi/~gonzalo/documents/simulations/
m25_s_3

[27] http://www.hut.fi/~gonzalo/documents/simulations/
m25_l_0

[28] http://www.hut.fi/~gonzalo/documents/simulations/
m25_l_1

[29] http://www.hut.fi/~gonzalo/documents/simulations/
m25_l_2

[30] http://www.hut.fi/~gonzalo/documents/simulations/
m25_l_3

[31] http://www.hut.fi/~gonzalo/documents/simulations/t
9_s_0

[32] http://www.hut.fi/~gonzalo/documents/simulations/t
9_s_1

[33] http://www.hut.fi/~gonzalo/documents/simulations/t
9_s_2

[34] http://www.hut.fi/~gonzalo/documents/simulations/t
9_s_3

[35] http://www.hut.fi/~gonzalo/documents/simulations/t
9_l_0

[36] http://www.hut.fi/~gonzalo/documents/simulations/t
9_l_1

[37] http://www.hut.fi/~gonzalo/documents/simulations/t
9_l_2

[38] http://www.hut.fi/~gonzalo/documents/simulations/t
9_l_3

[39] http://www.hut.fi/~gonzalo/documents/simulations/t
16_s_0

[40] http://www.hut.fi/~gonzalo/documents/simulations/t
16_s_1

[41] http://www.hut.fi/~gonzalo/documents/simulations/t
16_s_2

[42] http://www.hut.fi/~gonzalo/documents/simulations/t
16_s_3

[43] http://www.hut.fi/~gonzalo/documents/simulations/t
16_l_0

[44] http://www.hut.fi/~gonzalo/documents/simulations/t
16_l_1

[45] http://www.hut.fi/~gonzalo/documents/simulations/t
16_l_2

[46] http://www.hut.fi/~gonzalo/documents/simulations/t
16_l_3

[47] http://www.hut.fi/~gonzalo/documents/simulations/
m25_s_2bis

[48] http://www.hut.fi/~gonzalo/documents/simulations/
m25_s_3bis

[49] http://www.hut.fi/~gonzalo/documents/simulations/
m25_l_2bis

[50] http://www.hut.fi/~gonzalo/documents/simulations/
m25_l_3bis

[51] http://www.hut.fi/~gonzalo/documents/simulations/
m9_s_2bis

[52] http://www.hut.fi/~gonzalo/documents/simulations/
m9_s_3bis

[53] http://www.hut.fi/~gonzalo/documents/simulations/
m9_l_2bis

[54] http://www.hut.fi/~gonzalo/documents/simulations/
m9_l_2bis

