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This thesis examines issues related to the transmission of voice over packet networks using

the Internet Protocol (IP). We focus on studying the delays that are generated in the

terminal, which is a Unix workstation equipped with an IP voice application software.

Delay components in the terminal are presented. We measure the processing delays in the

terminal using different audio codecs and measure the end-to-end delays using different

scheduling parameters for the IP voice application. A significant part of the delay is shown

to be caused by buffering at the receiving terminal. This is a feature of the application

software and can be removed by modifying the source code.

We also make a comparison of adaptive algorithms that are used to calculate the playout

times of the voice packets. Algorithms are simulated using different network loads and thus

different delay distributions of the voice packets in an Ethernet. We present a new playout

algorithm which is a combination of two existing algorithms. This algorithm is shown to

outperform the other two real-time algorithms that are compared in our studies.
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Tässä työssä tutkittavat asiat liittyvät puheen välittämiseen pakettikytkentäisten verkkojen

yli käyttäen Internet protokollaa (IP). Perusongelmana IP-protokollan käytössä puheen

siirtoon ovat reaaliaikaisten sovellusten vaatimukset alhaisesta viiveestä ja viiveen

vaihtelusta. Ruuhkaisessa Internetissä lisäongelmia tuo vielä vaadittu suuri kaista. Puheen

koodaaminen ja pakkaaminen tuo helpostusta sekä viive- että kaistavaatimuksiin, mutta

vaatii paljon prosessointia.

Aikaisemmissa tutkimuksissa on todettu merkittävän osan viiveestä syntyvän

päätelaitteessa. Päätelaitteena toimii useimmiten PC tai työasema, joka on varustettu jollain

IP-puheohjelmistolla. Lisäksi tarvitaan äänikortti, mikrofoni ja kaiutin sekä tietysti

verkkoyhteys Internetiin.

Päätelaitteessa viivettä syntyy sekä laitteiston, että myös ohjelmiston toiminnasta.

Laitteistossa puhenäytteet muunnetaan analogisesta digitaaliseen muotoon äänikortilla

ennen lähetystä. Vastaavasti vastaanottavassa päätelaitteessa suoritetaan muunnos

digitaalisesta analogiseen muotoon. IP-puheohjelmiston asetuksilla määritellään

puhepakettien pituus sekä käytetty puheenkoodausalgoritmi. Puheen koodauksesta ja

dekoodauksesta aiheutuvat prosessointiviiveet riippuvat käytetystä algoritmista sekä

päätelaitteen prosessorin laskentatehosta. Myös käyttöjärjestelmällä ja sen käyttämällä
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skedulointimenetelmällä on vaikutusta viiveeseen, koska käyttöjärjestelmä joutuu

jakamaan prosessoriaikaa päätelaitteessa kullakin hetkellä käynnissä olevien ohjelmien

kesken.

Verkon aiheuttama viiveen vaihtelu joudutaan vastaanottavassa päätelaitteessa poistamaan

puskuroimalla paketteja muistiin. Koska yleensä puheen hiljaisia jaksoja ei lähetetä, lähetys

koostuu jaksoista puhetta. Puskurointiviiveet lasketaan uudelleen kullekin jaksolle käyttäen

adaptiivista algoritmia. Käytetyllä algoritmilla ja sen parametreilla on merkittävä vaikutus

kokonaisviiveeseen.

Tässä työssä suoritetaan viivemittauksia Unix-käyttöjärjestelmällä varustetussa

työasemassa, joka yhdessä Nevot-ohjelmiston kanssa toimii IP-päätelaitteena. Nevotin

lähdekoodit instrumentoidaan siten, että tuloksena saatavista profilointitiedostoista

nähdään ohjelman kuluttama prosessoriaika erilaisilla audiokoodauksilla. Kokonaisviiveet

kahden työaseman välillä mitataan oskilloskoopilla ja viiveiden riippuvuus ohjelmalle

käytetyistä skedulointiparametreista todetaan. Myös muut viiveen komponentit, kuten

verkon viive ja viiveet äänikortilla mitataan.

Merkittävä osa kokonaisviiveestä huomataan syntyvän vastaanottavassa työasemassa, jossa

puskurointiviive kasvaa pian ohjelman käynnistämisen jälkeen 60 millisekuntiin, vaikka

verkko olisi kuormittamaton. Tämä johtuu Nevotin ominaisuudesta, jossa tarkoituksena on

ennaltaehkäistä puskurin alivuotoja ja täten parantaa äänen laatua. Tämä ominaisuus on

helppo poistaa muuttamalla lähdekoodia ja kääntämällä ohjelma uudelleen. Verkon ollessa

kuormittamaton tämä muutos ei vaikuta äänen laatuun ja kokonaisviive saadaan pudotettua

30-40 millisekunnin tasolle, jos käytetään 20 millisekunnin pakettikokoa.

Työn loppuosassa vertaillaan puskurointiviiveiden laskemiseen käytettäviä adaptiivisia

algoritmeja. Kuormittamalla verkkoa protokolla-analysaattorilla saadaan aiheutettua

erilaisia pakettien viivejakautumia. Lähetettyjen ja vastaanotettujen pakettien RTP-

aikaleimat talletetaan tiedostoiksi käyttäen Nevotin debug-optiota, jolloin eri algoritmeja

voidaan simuloida Matlabin avulla käyttäen samoja datatiedostoja.

Työssä esitetään uusi algoritmi, joka on toteutettu yhdistämällä kaksi lähdekirjallisuudesta

löydettyä algoritmia. Tämän algoritmin osoitetaan antavan parempia tuloksia verrattuna

kahteen muuhun reaaliaikaiseen algoritmiin, joita on vertailtu simuloinneissa.
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1. INTRODUCTION

The transmission of voice over packet switched networks was an active research area in the

late 70’s and the early 80’s. Much of the work then focused on using packet switching for

both voice and data in a single network. Packet voice, and more generally, packet audio

applications have recently become again of interest. This interest has been fueled by the

availability of supporting hardware and increased bandwith throughout the Internet.

The Internet provides a simple single class best effort service. From a connection’s point of

view, the best effort service amounts in practice to offering a channel with time-varying

characteristics such as delay and loss distributions. These characteristics are not known in

advance since they depend on the behavior of other connections throughout the network. A

variety of audio tools have been available for a few years, and they have been used to

audiocast conferences. Experimental evidence suggests that, although the quality of the

audio delivered by Internet tools has improved, audio quality is still mediocre in many

audio conferences. This is clearly a concern since audio quality has been found to be more

important than video quality or audio/video synchronization to succesfully carry out

collaborative work.

For audio quality in packet audio applications, the main concerns are the delay and delay

variance. In earlier studies [1] it was noted that in LANs and campus networks where

network caused delay and delay variance were relatively small, most of the end-to-end

delay was accumulated in the terminals.

In the terminal, delay is accumulated both by the hardware and the software. In the audio

hardware, voice samples are A/D converted at the sender and D/A converted at the

receiver. In the packet audio application software processing delay is introduced.

Processing delay is very much dependent on the used speech codec. Some codecs, like

PCM codec have very little to do and introduce very little delay whereas, for example, a

GSM codec requires excessive computation and causes significantly more processing

delay. Buffering of voice samples is necessary both at sending and receiving end. Buffering

delays are introduced both in the audio hardware and in the packet audio software. Delays

are introduced also by the operating system because it has to assign processor time also to

other processes that are simultaneously running in the terminal.
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The network caused delay variance has to be smoothed in the application software in order

to preserve the sound quality. Voice packets are buffered at the receiver and they are played

out periodically. The algorithms used to calculate the appropriate playout time for each

packet of voice are called playout algorithms.

1.1. Goals of the thesis

The purpose of this thesis is to study the delays that are generated in an IP voice terminal

during a packet audio connection. The objectives are to find out what are the delay

components in the terminal, study a VoIP application software in detail to resolve if there

is something in the implementation that causes additional delays, and study how well Unix

operating system supports real-time applications. We will also make a literature study of

playout algorithms and simulate them with Matlab.

1.2. Structure of the thesis

Chapter two begins with an introduction to the main concepts related to Voice over IP: its

applications, the protocols and the standards. In the same chapter we will present some of

the fundamentals of packet voice: voice traffic models and the voice packetization process.

Chapter three is about speech coding. It begins with introduction to speech coder attributes

and speech coding techniques. Then the most used speech codecs in packet voice

applications are presented. Chapter four explains playout delay adaptation: the mathematics

and algorithms used in delay estimation. Chapter five is about operating systems and

scheduling concepts, the Unix process scheduler is explained in more detail. Chapter six

reports the performed measurements and obtained results. Chapter seven presents

conclusions and topics for future work.
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2. VOICE OVER IP CONCEPTS

Voice over IP (VoIP) is the transmission of voice over networks using the Internet

Protocol. IP-networks have become increasingly popular in the past few years, the

exponential growth of the public Internet leading the way into the IP-world.

In this chapter, the basic concepts relating to voice over IP will be presented: history of

Voice over IP, what it is used for and why, the applications, the main standards and

protocols relating to VoIP: IP, UDP, TCP, RTP, and H.323.

2.1. History of Voice over IP

The transmission of voice signals over packet networks is not a new concept. It was an

active research topic in the late 70’s and early 80’s. Already then, in the late 70’s there was

discussion and even experiments with packetized voice over the ARPANET, the

predecessor of the Internet using IP and specialized coding and packetizing equipment [2].

The conclusion then was that packetized voice has economical advantages and can be

done. Still it took some fifteen years for the packetized voice to gain popularity.

Specialized equipment are no longer required: a desktop general purpose personal

computer, a sound card, microphone and speakers, and some software are all that is

needed. The needed equipment is already built into most multimedia capable computers

today, and with the wide-spread connectivity to the Internet, local and wide area telephony

over packet data networks is possible for a very large audience.

2.2. Benefits of Voice over IP

Increased bandwith and computational resources have made interactive voice

communication between workstations across packet communication facilites feasible.

Cooperative work, teleconferencing, and videotelephones are applications that have

attracted a large amount of implementation and research interest.

Transmitting voice across a packet-switched network offers a number of advantages over

the circuit-switched approach. First, we obtain all the well-known benefits of service

integration, particularly important in a multimedia setting. Secondly, we may be able to

achieve a higher bandwith utilization since voice does not always use its peak bandwith
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(due to silence periods and variable rate coding). Finally, because interleaving several

associations tends to be easier in a packet-switched network, control can be more

sophisticated [3].

2.3. Scenarios of Voice over IP

There are three basic network scenarios for Voice over IP. These scenarios are illustrated in

Figure 2-1.

· Computer to Computer

This is the basic scenario: both A and B subscribers are using computers attached to an IP

network as terminals.

· Computer to Phone and Phone to Computer

In this scenario, one of the subscribers is using a computer for IP-voice and the other uses a

phone on a PSTN/ISDN/GSM/TDM network. A gateway on the edge of the IP network

translates IP-voice to voice and takes care of the signaling between the two networks.

· Phone to Phone

Both subscribers are using conventional phones in this option, and the IP network is used

for the long distance connection. Gateways on both ends take care of translations between

networks [1].

Figure 2-1: The framework for IP voice
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2.4. Voice over IP terminal equipment

The IP phone terminal equipment can be workstations or personal computers equipped

with IP phone software, sound card, speakers, a microphone and of course a network

interface. The first experimental terminal software was designed for UNIX workstations

with plenty of processing capability and memory, but the Pentium equipped PCs of today

can do the job as well. The minimum requirements are mostly stated as the 486. If video is

used with audio, then Pentium II MMX processor equipped computer could be barely

sufficient.

Nowadays there are also available special IP-telephones that look like normal telephones

with a telephone handset. An ordinary telephone handset gives more comfort and better

audio quality than the speaker/microphone combination.

2.5. IP Voice gateway

An IP voice gateway is an interworking unit capable of translating IP-phone signals to

ordinary telephone signals, capable of IP address to telephone number conversion and

foremost can signal open a connection from the IP network to a terminal in the telephone

network. So far the gateways have been built around PC hardware. The processing

intensive coding and decoding of voice is done with special DSP-equipped telephony

boards. The control functions are run in main memory using the CPU. There are scaling

and reliability problems in architectures like this, and the cost is also relatively high [1].

2.6. IP Voice related standards and protocols

In this section we present the most important protocols and standards related to Voice over

IP. Figure 2-2 presents the Voice over IP protocol stack. We will start with Internet

Protocol. This will be continued by an introduction to UDP and TCP protocols, the two

transport layer protocols of IP. For realtime transmission of voice UDP is mostly used.

TCP is used in relation to VoIP for streaming control and applications where added

buffering delay is acceptable, e.g. audio broadcast. To make use of TCP retransmissions,

buffering is needed. Waiting for retransmissions is not appropriate for realtime

communications, where interactivity needs to be maintained. RTP is the session layer
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protocol used for synchronization, multicast session participant information relaying, and

recipient network quality monitoring purposes.

             RTP

        TCP/UDP

               IP

        LLC/SNAP

      Physical layer

Figure 2-2: The Voice over IP protocol stack

2.6.1. The Internet Protocol (IPv4)

2.6.1.1. IP Services

Two primitives are defined at the user-IP interface. The Send primitive is used to request

transmission of a data unit. The Deliver primitive is used by IP to notify a user of the

arrival of a data unit. Although not part of the standard, IP is expected to use an Error

primitive to notify a user of failure in providing the requested service. This service is not

assumed to be reliable, that is, there is no guarantee that errors will be reported.

2.6.1.2. IP Protocol

The protocol between IP entities is best described by defining the IP datagram format,

which is shown in Figure 2-3. The fields are:

Figure 2-3: IP protocol data unit
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� Version (4 bits): version number, included to allow evolution of the protocol.

� Internet header length (IHL) (4 bits): length of header in 32-bit words. The minimum

value is 5. Thus a header is at least 20 octets long.

� Type of service (8 bits): specifies reliability, precedence, delay, and troughput

parameters.

� Total length (16 bits): total data unit length, including header, in octets.

� Identifier (16 bits): together with source address, destination address, and user protocol,

intended to uniquely identify a datagram.

� Flags (3 bits): one bit, the More flag, used for fragmentation (segmentation) and

reassembly. Another bit, if set, prohibits fragmentation. This facility may be useful if it

is known that the destination does not have the capability to reassemble fragments. The

third bit is currently not used.

� Fragment offset (13 bits): indicates where in the datagram this fragment belongs. It is

measured in 64 bit units. This implies that fragments (other than the last fragment) must

contain a data field that is a multiple of 64 bits long.

� Time to live (8 bits): measured in router hops.

� Protocol (8 bits): indicates the next level protocol which is to receive the data field at

the destination.

� Header checksum (16 bits): frame check sequence on the header only. Since some

header fields may change, this is reverified and recomputed at each router.

� Source address (32 bits): coded to allow a variable allocation of bits to specify the

network and the station within the specified network.

� Destination adress (32 bits): as above.

� Options (variable): encodes the options requested by the sender.

� Padding (variable): used to ensure that the header ends on a 32-bit boundary

� Data (variable): the data field must be a multiple of eight bits in legth. Total length of

data field plus header is a maximum of 65535 octets.

It should be easy to see how the services specified above map into the fields of the IP data

units [4].

2.6.2. The next generation of IP (IPv6)

IP next generation (IPng) [5], [6] is a new version of the Internet Protocol designed as a

successor to the IP version 4. The version number assigned for IPng is 6 and it is formally
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called IPv6. It was not designed to be a giant leap away from IPv4 - many of the functions

of IPv4 were kept. The primary motivation for the design of IPng was the exponential

growth of the Internet leading to running out of IP address space. IPng offers: expanded

routing and addressing capabilities, auto-configuration of addresses, improved scalability

of multicast routing by adding a "scope" field to multicast addresses, a simplified header

format (despite the increased address size, headers have only doubled), improved support

for options, quality-of-service capabilities (flow labeling), authentication and privacy

capabilities. The IPng header (Fig. 2-4) consists of two parts, the basic IPng header and

IPng extension headers.

Figure 2-4: IPv6 header

2.6.3. Transport Control Protocol (TCP)

2.6.3.1. TCP Services

TCP is designed to provide reliable communication between pairs of processes (TCP users)

across a variety of reliable and unreliable networks and Internets. Functionally, it is

equivalent to class 4 ISO Transport. In contrast to the ISO model, TCP is stream oriented.

That is, TCP users exchange streams of data. The data are placed in allocated buffers and

transmitted by TCP in segments (TPDUs). TCP supports security and precedence labeling.

In addition, TCP provides two useful facilities for labeling data: push and urgent:

• Data stream push: Ordinarily, TCP decides when sufficient data has accumulated to

form a TPDU for transmission. The TCP user can require TCP to transmit all

outstanding data up to and including that labeled with a push flag. On the receiving

end, TCP will deliver these data to the user in the same manner. A user might request

this if it has come to a logical break in the data.
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• Urgent data signaling: This provides a means of informing the destination TCP user

that significant or “urgent” data is in the upcoming data stream. It is up to the

destination user to determinate appropriate action.

When user wants some service from TCP, it sends a service request to TCP, and TCP will

reply with a service response.

2.6.3.2. TCP header format

TCP uses only a single type of TPDU, called a TCP segment. The header is shown in

Figure 2-5. Because one header must serve to perform all protocol machanisms, it is rather

large. The TCP header is a minimum of 20 octets long. The fields are [4]:

Figure 2-5: TCP header

� Source port (16 bits): identifies source service access point.

� Destination port (16 bits): identifies destination service access point

� Sequence number (32 bits): sequence number of the first data octet in this segment

except when SYN is present. If SYN is present, it is the initial sequence number (ISN)

and the first data octet is ISN+1.

� Acknowledgement number (32 bits): a piggybacked acknowledgement. Contains the

sequence number of the next octet that the TCP entity expects to receive.

� Data offset (4 bits): number of 32-bit words in the header.

� Reserved (6 bits): reserved for future use.

� Flags (6 bits):

     URG: urgent pointer field significant

     ACK: acknowledgement field significant

     PSH: push function

     SYN: synchronize the sequence numbers

     FIN: no more data from the sender
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� Window (16 bits): flow control credit allocation, in octets. Contains the number of data

octets beginning with the one indicated in the acknowledgment field which the sender is

willing to accept.

� Checksum (16 bits): the one’s complement of the sum modulo 216-1 of all the 16-bit

words in the segment plus a pseudo-header.

� Urgent pointer (16 bits): points to the octet following the urgent data. This allows the

receiver to know how much urgent data is coming.

� Options (variable): at present, only one option is defined, which specifies the maximum

TPDU size that will be accepted.

TCP is designed specifically to work with IP. Hence, some user parameters are passed

down by TCP to IP for inclusion in the IP header. This TCP/IP linkage means that the

required minimum overhead for every data unit is actually 40 octets.

2.6.4. User datagram protocol (UDP)

UDP provides a connectionless service for application-level procedures. Thus UDP is

basically an unreliable service; delivery and duplicate protection are not guaranteed.

However, this does reduce the overhead of the protocol and may be adequate in many

cases. An example of the use of UDP is in the context of network management.

UDP sits on top of IP. Because it is connectionless, UDP has very little to do. Essentially, it

adds a port addressing capability to IP. This is best seen by examining the UDP header,

shown in Figure 2-6. The header includes a source port and destination port. The length

field contains the length of the entire UDP segment, including header and data. The

checksum is the same algorithm used for TCP and IP. For UDP, the checksum applies to

the entire UDP segment plus a pseudo-header prefixed to the UDP header at the time of

calculation and is the same one used for TCP. If an error is detected, the segment is

discarded and no further action is taken.

The checksum field in UDP is optional. If it is not used, it is set to zero. However, it should

be pointed out that the IP checksum applies only to the IP header and not to the data field,

which in this case consists of the UDP header and the user data. Thus, if no checksum

calculation is performed by UDP, then no check is made on the user data [4].
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Source port Destination port

Length Checksum

Figure 2-6: UDP header

2.6.5. Realtime protocol (RTP)

RTP provides end-to-end delivery services for data with real-time characteristics, such as

interactive audio and video. Those services include payload type identification, sequence

numbering, timestamping, and delivery monitoring. Applications typically run RTP on top

of UDP to make use of its multiplexing and checksum services; both protocols contribute

parts of the transport protocol functionality. However, RTP may be used with other suitable

underlying network or transport protocols. RTP supports data transfer to multiple

destinations using multicast distribution if provided by the underlying network.

Note that RTP itself does not provide any mechanism to ensure timely delivery or provide

other quality-of-service guarantees, but relies on lower-layer services to do so. It does not

guarantee delivery or prevent out-of-order delivery, nor does it assume that the underlying

network is reliable and delivers packets in sequence. The sequence numbers included in

RTP allow the receiver to reconstruct the sender's packet sequence, but sequence numbers

might also be used to determine the proper location of a packet, for example in video

decoding, without necessarily decoding packets in sequence [7].

2.6.5.1. RTP Data Transfer Protocol

The RTP header has the following format (Fig. 2-7):

Figure 2-7: RTP header

The first twelve octets are present in every RTP packet, while the list of CSRC identifiers

is present only when inserted by a mixer. The fields have the following meaning:
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� version (V): 2 bits. This field identifies the version of RTP. The version defined by this

specification is two.

� padding (P): 1 bit. If the padding bit is set, the packet contains one or more additional

padding octets at the end which are not part of the payload. Padding may be needed by

some encryption algorithms with fixed block sizes or for carrying several RTP packets

in a lower-layer protocol data unit.

� extension (X): 1 bit. If the extension bit is set, the fixed header is followed by exactly

one header extension.

� CSRC count (CC): 4 bits. The CSRC count contains the number of CSRC identifiers

that follow the fixed header.

� marker (M): 1 bit. The interpretation of the marker is defined by a profile. It is intended

to allow significant events such as frame boundaries to be marked in the packet stream.

� payload type (PT): 7 bits. This field identifies the format of the RTP payload and

determines its interpretation by the application.

� sequence number: 16 bits. The sequence number increments by one for each RTP data

packet sent, and may be used by the receiver to detect packet loss and to restore packet

sequence.

� timestamp: 32 bits. The timestamp reflects the sampling instant of the first octet in the

RTP data packet. The sampling instant must be derived from a clock that increments

monotonically and linearly in time to allow synchronization and jitter calculations. The

resolution of the clock must be sufficient for the desired synchronization accuracy and

for measuring packet arrival jitter.

� SSRC: 32 bits. The SSRC field identifies the synchronization source. This identifier is

chosen randomly, with the intent that no two synchronization sources within the same

RTP session will have the same SSRC identifier. Although the probability of multiple

sources choosing the same identifier is low, all RTP implementations must be prepared

to detect and resolve collisions.

� CSRC list: 0 to 15 items, 32 bits each. The CSRC list identifies the contributing sources

for the payload contained in this packet. The number of identifiers is given by the CC

field. If there are more than 15 contributing sources, only 15 may be identified. CSRC

identifiers are inserted by mixers, using the SSRC identifiers of contributing sources.

For example, for audio packets the SSRC identifiers of all sources that were mixed

together to create a packet are listed, allowing correct talker indication at the receiver.
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SSRC and CSRC are of course not relevant in a unicast session, if the source and the

receiver can be identified using network protocol source field. For example, in a two

person call in the Internet, the source is identified by IP source address.

2.6.5.2. RTP Control Protocol (RTCP)

The RTP control protocol (RTCP) is based on the periodic transmission of control packets

to all participants in the session, using the same distribution mechanism as the data

packets. The underlying protocol must provide multiplexing of the data and control

packets, for example using separate port numbers with UDP. RTCP performs four

functions:

1. The primary function is to provide feedback on the quality of the data distribution.

This is an integral part of the RTP's role as a transport protocol and is related to the

flow and congestion control functions of other transport protocols. The feedback

may be directly useful for control of adaptive encodings, but experiments with IP

multicasting have shown that it is also critical to get feedback from the receivers to

diagnose faults in the distribution. This feedback function is performed by the

RTCP sender (Figure 2-8) and receiver (Figure 2-9) reports.

2. RTCP carries a persistent transport-level identifier for an RTP source called the

canonical name or CNAME. Since the SSRC identifier may change if a conflict is

discovered or a program is restarted, receivers require the CNAME to keep track of

each participant. Receivers also require the CNAME to associate multiple data

streams from a given participant in a set of related RTP sessions, for example to

synchronize audio and video.

3. The first two functions require that all participants send RTCP packets, therefore

the rate must be controlled in order for RTP to scale up to a large number of

participants. By having each participant send its control packets to all the others,

each can independently observe the number of participants. This number is used to

calculate the rate at which the packets are sent.

4. A fourth, optional function is to convey minimal session control information, for

example participant identification to be displayed in the user interface.

Functions 1-3 are mandatory when RTP is used in an IP multicast environment, and are

recommended in all environments.
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Several RTCP packet types are defined to carry a variety of control information:

- SR: Sender report, for transmission and reception statistics from participants that are

active senders

- RR: Receiver report, for reception statistics from participants that are not active senders

- SDES: Source description items, including CNAME

- BYE: Indicates end of participation

- APP: Application specific functions

Figure 2-8: Sender report RTCP packet [7]
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Figure 2-9: Receiver report RTCP packet [7]

Each RTCP packet begins with a fixed part similar to that of RTP data packets, followed

by structured elements that may be of variable length according to the packet type but

always end on a 32-bit boundary. The alignment requirement and a length field in the fixed

part are included to make RTCP packets “stackable”. Multiple RTCP packets may be

concatenated without any intervening separators to form a compound RTCP packet that is

sent in a single packet of the lower layer protocol, for example UDP. All RTCP packets

must be sent in a compound packet of at least two individual packets, with the following

format recommended:

• Encryption prefix:

If and only if the compound packet is to be encrypted, it is prefixed by a random 32-bit

quantity redrawn for every compound packet transmitted.

• SR or RR:

The first RTCP packet in the compound packet must always be a report packet to

facilitate header validation. This is true even if no data has been sent nor received, in

which case an empty RR is sent, and even if the only other RTCP packet in the

compound packet is BYE.

• Additional RRs:

If the number of sources for which reception statistics are being reported exceeds 31,

the number that will fit into one SR or RR packet, then additional RR packets should

follow the initial report packet.
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• SDES:

An SDES packet containing a CNAME item must be included in each compound

RTCP packet. Other source description items may optionally be included if required by

particular application, subject to bandwith constraints.

• BYE or APP:

Other RTCP packet types, including those yet to be defined, may follow in any order,

except that BYE should be the last packet sent with a given SSRC/CSRC. Packet types

may appear more than once.

If the overall length of a compound packet would exceed the maximum transmission unit

(MTU) of the network path, it may be segmented into multiple shorter compound packets

to be transmitted in separate packets of the underlying protocol.

2.6.6. H.323

This recommendation defines the components, procedures, and protocols necessary to

provide audiovisual communications on local area networks. H.323 is applicable to any

packet-switched network regardless of the underlying physical layer. The network is

expected to provide a reliable delivery mechanism (such as TCP) and unreliable delivery

mechanism (such as UDP). An example of such a network is Ethernet using TCP/IP or

IPX/SPX protocol stacks. The recommendation is independent of network topology, and

H.323 terminals can communicate through hubs, routers, bridges, and dial-up connections

via star topologies and multidrop topologies.

H.323 provides various levels of multimedia communications. These levels include voice

only, voice and video, voice and data, or voice, video, and data communications over a

local area network [8].

2.6.6.1. H.323 terminal

The H.323 terminal provides real-time bidirectional audio, video, and data

communications. The recommendation defines call signaling, control messages,

multiplexing, audio codecs, video codecs, and data protocols. Figure 2-10 shows an

example of an H.323 terminal. H.323 does not specify audio or video equipment, data

applications, or the network interface; however, it does mandate certain capabilities in

order to provide a minimum level of interoperability. H.225.0 specifies the messages for
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call signaling, registration, and admissions, as well as packetization and synchronization of

the media streams. H.245 specifies the messages used for capability exchange, opening and

closing logical channels for media streams, and other commands, requests, and indications.

H.323 provides a variety of media coding options. For audio, G.711, G.728, G.723.1, and

G.729 are available. These algorithms provide a choice of lower bit rates, lower delay, or

improved quality. For video, H.261 QCIF and CIF as well as all modes of H.263 are

available. The choice of audio and video algorithms also provides compatibility with other

terminal types, thus eliminating the need to transcode media streams in the gateway. G.711

audio is mandatory; if video is supported, QCIF is mandatory. Receive path delay is

optional for both audio and video streams; this may be used to provide lip synchronization

and/or jitter control.

Unlike the other ITU-T terminal recommendations, H.323 describes not only terminals, but

also a number of other components on the LAN. This includes the gateway, gatekeeper,

multipoint controller, multipoint processor, and multipoint control unit.

2.6.6.2. Multipoint conferencing

One of the major differences between H.323 terminals and other ITU-T terminal types is in

multipoint conferencing. H.323 has defined several conferencing modes. Point-to-point

conferences take place between two terminals, multipoint conferences take place between

three or more terminals, and broadcast conferences take place between one sending

terminal and many receiving terminals.
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Figure 2-10: H.323 terminal equipment

Three types of multipoint conferences are defined: centralized, decentralized, and hybrid.

The centralized multipoint conference uses a multipoint control unit (MCU) to distribute

the media streams. Each terminal sends its media streams to the MCU, which then

distributes selected or mixed media streams back to the terminals.

2.6.6.3. Gateways

The gateway provides translation of call signaling, control channel messages, and

multiplexing techniques between the H.323 terminal and the other ITU-T terminal types.

Audio and video transcoding may not be required if both terminal types can find a common

communications mode.

2.6.6.4. Gatekeeper

The gatekeeper provides several functions. First, it provides a mechanism for network

administrators to control the amount of video telephony traffic on the network. This is done

through admission control. Terminals must get permission from the gatekeeper to place or

accept a call. The gatekeeper also provides address translation services. This function

converts external (telephone numbers) addresses and alias (name) addresses to network
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addresses, allowing users to maintain the same telephone numbers or alias addresses

regardless of changes to their network addresses.

The gatekeeper is optional in H.323 systems, and systems that do not have gatekeepers may

not have these capabilities.

2.7. Voice source characterization

The standard coding methods of a voice source result in more or less what is depicted in

Figure 2-11. The packet length is dependent of the codec used, sampling frequency, frame

length and the number of coded frames in one packet. Frame length indicates the number of

samples per coded frame. For example, if we are sampling 8000 samples/s and the frame

length is 20 ms we have 160 samples in a frame. The packetization interval is constant and

typically 1-2 frame lengths, i.e., 20-40 ms.

A single voice source can be represented by a two-state process. Human speech consists of

alternating intervals of inactivity (silence) and activity (talkspurt). The talkspurt lengths

average from 0,4 to 1,2 s, and the silence average 0,6 to 1,8 s. This phenomenon has been

used for a long time in analog telephony to multiplex and pack multiple calls into one trunk

in systems called time-assigned speech interpolators, TASIs, and the digital telephony

counterparts, DSIs [1].

Figure 2-11: The traffic characteristics of a voice stream

Whether the block is to be treated as silence or as part of a talkspurt, is decided by a silence

detector. The silence detector does not aim to minimize the talk activity and should kick in

only between longer talkperiods (speaker alternation) rather than between words and most
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sentences. Its main purpose is to suppress background noise and reduce network load

during multi-participant conferences [9].

2.7.1. Packetization Process

Implementations of VoIP terminals may vary, but they all do the following:

1. Audio from microphone or line input is A/D converted at the audio input device;

2. The samples are copied to a memory buffer in blocks of frame length;

3. The VoIP application estimates the energy levels of the block of samples;

4. Silence detector decides whether the block is to be treated as silence or as part of a

talkspurt;

5. If the block is a talkspurt it is coded with the selected algorithm (e.g., GSM 06.10);

6. Information indicating the packet’s position within the talkspurt is added;

7. A chosen number of blocks of audio are taken to create one RTP packet, and RTP

headers are added;

8. The packet is written to correct socket interface (UDP port), IP-headers are added,

physical framing and transmission;

9. Packet is received, de-framed, IP-header checked;

10. Packet is read through the UDP socket;

11. RTP-headers are checked for type of payload data, sequence number, timestamp;

12. Sequence number and timestamp are used to detect reordering and duplicates;

13. The insertion point of the incoming audio data is determined in the playout buffer;

14. The block of audio is decoded into samples and inserted in the playout buffer;

15. The block of samples is copied from the buffer to the audio output device;

16. The audio output device D/A converts the samples and outputs them.

Figure 2-12: Packetization and de-packetization
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The packetization and de-packetization is depicted at a very high level in Figure 2-12. In

addition to the functions mentioned above the terminal sends congestion information and

receives feedback information. Also an automatic gain and echo cancellation can be

implemented in the audio input by the VoIP software. The buffering can take place both

after sampling and after coding at the sender. The receiver can buffer both after receiving

and before D/A-coding [1].
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3. SPEECH CODING

Speech coding is conversion of a speech signal into a digital form. The simplest way to do

this is by applying sampling theorem directly. This means sampling the waveform at a rate

of twice the highest frequency present in the signal, and then digitizing the resulting

samples to some desired degree of accuracy. The telephony nominal bandwith is 4 kHz, so

the speech signals need to be sampled at a rate of 8000 samples per second. The desired

signal-to-noise ratio is dependent on the number of used encoding amplitude levels.

One of the goals of speech coding is to reduce the bit rate. To do this speech waveform

specific properties have to be exploited. Adaptive quantizers vary their characteristics over

time. This is to match the dynamic range variations of the speech signal. Time-varying

filters exploit the short-term and long-term correlations of the signal. Coding methods can

also take advantage of the property that, in human hearing, noise can be masked by the

speech signal, if the spectral level of the noise is below the spectral level of the speech.

A typical speech coder consists of two modules: an analysis module and a synthesis

module. The analysis module extracts from the speech waveform the time varying

excitation waveform and the time varying filter parameters. The synthesis module recreates

the perceptually best match to the original speech waveform.

This chapter presents the main aspects of speech coding: its history, speech coder

attributes, and speech coding techiques. Also the most common speech coders concerning

IP voice are presented.

3.1. The history of speech coding

Prior to the era of digital communications, speech was transmitted and stored as an analog

signal. Today it can be represented in a digital form, which allows storing and transmitting

in a more efficient way. The first speech coder, Homer Dudley’s vocoder, was created

almost 60 years ago. It was put to use for the first secure telephony during World War II.

From then until the early 1970s, it seemed like only the military was interested in speech

coding. All of this changed in the next two decades. The telephone networks of the world

became digital. Pulse code modulation at 64 kb/s (PCM), designed to transmit telephone

bandwith speech, made it possible to maintain uniform quality for long distance
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connections. Network operators soon realized that by using 32 kb/s adaptive differential

PCM (ADPCM), they could double the capacity of important narrow bandwith links, such

as undersea cables. By the 1980s we were entering the era of the PC and the cellular phone.

Many new applications, such as digital cellular telephony, voice messaging, videophones,

multimedia documents, and Internet telephony, need digital speech coders. Each of these

applications has it’s own requirements. Consequently, many new coders were standardized

in the 10-year period 1987-1996 [10].

3.2. Speech coder attributes

Speech coding attributes can be divided into four categories: bit rate, delay, complexity,

and quality. The applications engineer determines which attributes are most important. It is

possible to relax requirements for the less important attributes so that more important ones

can be met. Table 3-1 is a list of standardized speech coders and their attributes [10], [11].
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Table 3-1: List of standardized speech coders

Standard Algorithm Complexity

(MIPS)

Frame

size/looka-

head (ms)

Compres-

sion

Bit rate

(kb/s)

MOS Year

finalized

G.711 PCM 0 0,125/0 1 64 4,10 1972

G.726,

G.727

ADPCM 1 0,125/0 4/2,7/2/1,6 16/24/32/40 3,85 1990

G.722 0,125/1,5 1,3/1,1/1 48/56/64 1988

G.728 LD-CELP 30 0,625/0 4 16 3,61 1992, 1994

G.729 CS-

ACELP

20 10/5 8 8 3,92 1995

G.729A CS-

ACELP

11 10/5 8 8 3,7 1995

G.723.1 MPC-

MLQ

16 30/7,5 10,2/12,1 6,3/5,3 3,9 1995

GSM

06.10

RPE-LTP 10 20/0 4,9 13 3,50 1987

IS-54 VSELP 24 20/5 8 8 3,54 1990

PDC VSELP 20/5 9,6 6,7 1990

IS-96 QCELP 20/5 7,5/16/32/

80

8,5/4/2/0,8 1993

PDC PSI-CELP 40/10 18,6 3,45 1993

FS-1016 CELP 30 13,3 4,8 3,0

FS-1015 LPC10E 15 26,7 2,4 2,4

3.2.1. Bit rate

Bit rate is an attribute that often comes to mind first when thinking of speech coders. The

range of bit rates that have been standardized is from 2,4 kb/s for secure telephony to 64

kb/s G.711 PCM and the G.722 wideband (7 kHz) speech coder. Nominal bit rate for a

speech coder is the peak rate. Any of the fixed-rate speech coders can be combined with a

voice activity detector and made into a simple two-state variable-bit-rate-system. The lower

rate could be either zero or some low rate needed to characterize a slowly changing

background noise characteristic. Either way, the bandwith of the communications channel

is only used for active speech. For circuit multiplication equipment, planners generally

assume that individual talkers only have active speech about 40 percent of the time in a
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two-way conversation. (The percentage is even lower for conference calls.) As a result, the

effective bandwith of the link can be increased up to 2,5 times by speech interpolation [10].

3.2.2. Delay

The delay of a speech coder can have a great impact on its suitability for a particular

application. Let us compare two different types of applications to illustrate this. The first is

a speech coder used for a real-time conversation; the second is a multimedia storage

application. Psychologists who have studied conversational dynamics know that if the one

way delay of a conversation is greater than 400 ms, the conversation will become more like

a half-duplex or push-to-talk experience, rather than an ordinary conversation. In contrast,

if a speech or audio file is being downloaded to a client terminal, whether it is delayed an

additional 400 ms before starting will be virtually imperceptible to the user. The user is

already prepared to wait several seconds between issuing the command and beginning to

listen to the file. Thus, a conversation is an example of an application that is most delay-

sensitive, while storage is least delay-sensitive.

Reviewing our list in Table 3-1, we find that the highest-rate speech coders, such as G.711

PCM and G.726 ADPCM, have the lowest delay. To achieve higher degrees of

compression, speech must be divided into blocks of frames and then encoded a frame at a

time. For G.728 the frames are five samples (0,625 ms) long. For first-generation cellular

coders, the frames are 20 ms long. This does not account for the full delay, however. The

components of the total system delay include the frame size, lookahead, multiplexing

delay, processing delay for computation, and transmission delay. The algorithm used for

the speech coder will determine the frame size and lookahead. Lookahead means that a

corresponding number of samples are needed from the future speech frame. Algorithm’s

complexity will have an impact on the processing delay. The system will determine the

multiplexing and transmission delays [10].

3.2.3. Complexity

Most speech coders are impemented on DSP’s or other special-purpose hardware.

However, recent multimedia speech coders have been implemented on the host CPU of

personal computers and workstations. The measures of complexity for a DSP and a CPU

are somewhat different, due to the natures of these two systems. At the heart of complexity
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is always the raw number of computational instructions required to implement the speech

coder. DSPs from different vendors have different architectures, and consequently different

efficiencies in implementing the same coder.

The measure used to indicate the computational complexity is the number of instructions

per second required for implementation. This is usually expressed in millions of

instructions per second (MIPS). DSPs also have high-speed static random access memory

(RAM) on-chip for storing variables and data. Usually this is from 1000 to 10000 words of

RAM. The amount of RAM required is a second measure of complexity. For the coders in

Table 3-1, G.726 and G.727 take less than 100 words of RAM; the other ITU coders range

from 2000 to 3000.

Finally, DSPs have on-chip read-only memory (ROM) for storing constants and the

program instructions. Required ROM storage is the third measure of compexity. For the

ITU coders in Table 3-1, G.726 and G.727 use about 1000 words of ROM, while the others

are typically in the range of 10000 words. For an implementation on a PC or workstation,

the number of instructions per second is the only relevant measure. General purpose

computers have far more RAM (although it is usually slower-speed, less expensive

dynamic RAM). Both the RAM and ROM from the DSP implementation will be stored in

RAM to run the program on a computer. However, general-purpose computers tend to have

less efficient processor architectures for implementing digital signal processing algorithms.

Consequently, an algorithm requiring 10 MIPS on a DSP may require far more cycles on a

computer [10].

3.2.4. Quality

ITU-T Recommendation P.830 [12] provides guidelines for assessing the subjective

performance (i.e., speech quality) of speech codecs. Rec. P.830 uses the test procedures

that are defined in Recommendation P.800 [13]; the absolute category rating (ACR)

method, and the comparison category rating method. The ACR and CCR methods make

use of recorded speech samples that have been processed through a number of test

“connections”. The processed material is recorded and these samples are presented to

panels of listeners. These listeners then make judgments that are defined by the test

procedure (ACR or CCR).
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3.2.4.1. Absolute category rating

The absolute categoty rating (ACR) method is, perhaps, the most widely used method for

evaluating the subjective performance of speech processing equipment in the global

switched telephone network. The results of such evaluations are expressed in terms of a

mean opinion score (MOS) for each test condition. Each participant in the evaluation hears

a collection of speech samples, rating each one in turn. These ratings typically are made

using the “listening quality scale”. This scale uses the following verbal descriptions and

associated numerical assignments:

Quality of the speech Score

Excellent 5

Good 4

Fair 3

Poor 2

Bad 1

The numerical representations of the ratings are averaged yielding the mean listening-

quality opinion score, or simply MOS.

3.2.4.2. Comparison category rating

The comparison category rating (CCR) method provides a means of comparing the quality

of two speech samples. Typically, one of the samples is the original (unprocessed) sample,

while the other sample is the same material, having been processed through some condition

of interest (e.g., a speech codec.) The results of such evaluations are expressed in terms of a

comparision mean opinion score (CMOS) for each test condition.

Quite simply, the listeners hear two speech samples. One is the original material, the other

is the same sample that has been processed by a speech codec. The order of presentation is

random. Listeners are asked to compare the quality of the second speech sample to that of

the first using the following verbal descriptions and associated numerical assignments:
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Much better 3

Better 2

Slightly better 1

About the same 0

Slightly worse           -1

Worse           -2

Much worse           -3

In effect, listeners provide two judgments with one response: “Which sample has better

quality?” and “By how much?”. The numerical representations of the comparison ratings

are averaged yielding the comparison mean opinion score (CMOS). A negative CMOS

means that the processed material is judged to have lower quality than that of the original

material. A CMOS of zero, then, means that the test condition has the same quality as the

original material.

As with other paired-comparison methods, the CCR method is quite sensitive. Seemingly

small differences in the speech quality measured in the ACR task may result in fairly large

differences in CMOS [11].

3.3. Speech coding techniques

3.3.1. Waveform coders and source coders (vocoders)

A broad class of speech coders is termed waveform coders. As the name implies, these

coders essentially strive for facsimile reproduction of the signal waveform. In principle,

they are designed to be signal independent, hence they can code equally well a variety of

signals: speech, music, tones, voiceband data. They also tend to be robust for a wide range

of talker characteristics and for noisy environments. To preserve these advantages with

minimal complexity, waveform coders typically aim for moderate economies in

transmission bit rate. Waveform coders can be optimized and made more signal-specific

for greater coding efficiency. This typically is done by observing statistics of a given signal

set, so that the waveform coder yields minimal encoding error for this signal class, (i.e.,

speech). The tailoring of these coders is thus based on a statistical characterization of

speech waveforms, as distinct from parameterization of speech information according to

some physical model of the signal.
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A second class of speech coders depends upon a parsimonius description of speech using a

priori knowledge about how the signal was generated at the source. The idea is that certain

physical constraints of the signal generation can be quantified, and turned to advantage in

efficiency describing the signal. This implies that the signal must be fitted into a specific

(in our case, speech-specific) mold and parameterized accordingly. We refer to coding

techiques that exploit constraints of signal generation as “source coders”. Source coders for

speech are generally referred to as vocoders (a contraction of the words voice coders).

The traditional speech generation model, that dates from so-called “channel vocoder” days,

is the source-system model. The sound generating mechanism (the source) is assumed to be

linearly separable from the intelligence-modulating, vocal-tract filter (the system). Other

assumptions are that speech sounds are either voiced or unvoiced, and that they are

generated either from quasi-periodic vocal-cord sound, or from random sound produced by

turbulent airflow. By exceedingly meticulous adjustments of parameters, one can

demonstrate speech reproduction with good quality. More generally, however, in actual

one-pass analysis/synthesis transmission, vocoders tend to be fragile (in terms of

parameters such as voiced/unvoiced decision and pitch values), the performance is often

talker dependent, and the output speech has a synthetic (less than natural) quality. These

characteristics constitute a ceiling on the performance that vocodrs can achieve. But a

virtue of their signal parameterization, vocoders can achieve very high economies in

transmission bandwidth.

The boundary between waveform coders and vocoders might be thought of as a sort of

middle ground, where the design criterion is neither waveform preservation nor signal

modeling. Rather, the guiding principle is the preservation of the short time amplitude

spectrum of the speech signal in an auditorily palatable way. This middle ground offers

opportunities to combine some advantages of both waveform and source coders [14].

3.3.2. Linear predictive coding of speech

One of the most powerful speech analysis techniques is the method of linear predictive

analysis. This method has become the predominant technique for estimating the basic

speech parameters, e.g., pitch, formants, spectra, vocal tract area functions, and for

representing speech for low bit rate transmission or storage. The importance of this method
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lies both in its ability to provide extremely accurate estimates of the speech parameters, and

in its relative speed of computation.

The basic idea behind linear predictive analysis is that a speech sample can be

approximated as a linear combination of past speech samples. By minimizing the sum of

the squared differences (over a finite interval) between the actual speech samples and the

linearly predicted ones, a unique set of predictor coefficients can be determined. (The

predictor coefficients are the weighting coefficients used in the linear combination.)

As applied to speech, the various (often equivalent) formulations of linear prediction

analysis have been:

� the covariance method

� the autocorrelation formulation

� the lattice method

� the inverse filter formulation

� the spectral estimation formulation

� the maximum likelihood formulation

� the inner product formulation

The first two are the most often used methods.

3.3.2.1. Basic principles of linear predictive analysis

In the linear predictive analysis, the composite spectrum effects of radiation, vocal tract,

and glottal excitation are represented by a time-varying digital filter whose steady-state

system function is of the form:
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This system is excited by an impulse train for voiced speech or a random noise sequence

for unvoiced speech. Thus, the parameters of this model are: voiced/unvoiced

classification, pitch period for voiced speech, gain parameter G, and the coefficients {ak }

of the digital filter. These parameters, of course, all vary slowly with time.

Figure 3-1 presents block diagram of this simplified model for speech production. The

speech samples s(n) are related to the excitation u(n) by the simple difference equation:
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A linear predictor with prediction coefficients, αk  is defined as a system whose output is:
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The prediction error, e(n), is defined as:
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From Eq. (3.4) it can be seen that the prediction error sequence is the output of a system

whose transfer function is:
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It can be seen by comparing Eqs. (3.2) and (3.4) that if the speech signal obeys the model

of Eq. (3.2) exactly and if αk ka=  , then e(n) = Gu(n). Thus, the prediction error filter,

A(z), will be an inverse filter for the system, H(z), of Eq (3.1), i.e.

H(z) = G / A(z) (3.6)

The basic problem of linear prediction analysis is to determine a set of predictor

coefficients {ak } directly from the speech signal in such a manner as to obtain a good

estimate of the spectral properties of the speech signal through the use of (3.6). Because of

the time-varying nature of the speech signal the predictor coefficients must be estimated

from short segments of the speech signal. The basic approach is to find a set of predictor

coefficients that will minimize the mean-squared prediction error over a short segment of

the speech waveform. The resulting parameters are then assumed to be the parameters of

the system function, H(z), in the model for speech production [15].
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Figure 3-1: Block diagram of simplified model for speech production

3.4. Speech codecs in VoIP products

Most commonly supported speech codecs in VoIP products are G.711 (PCM), G.726

(ADPCM), G.723.1 and G.729. Also GSM 06.10 and various vendor-specific speech

codecs are available. Some products support a wide range of speech codecs while some

others support only a couple [16].

3.4.1. Pulse code modulation (PCM)

Pulse code modulation (PCM) is essentially analog-to-digital conversion of a special type

where the information contained in the instantaneous samples of an analog signal is

represented by digital words in a serial bit stream.

If we assume that each of the digital words has n binary digits, there are M n= 2  unique

code words that are possible, each code word corresponding to a certain amplitude level.

However, each sample value from the analog signal can be any of an infinite number of

levels, so that the digital word that represents the amplitude closest to the actual sampled

value is used. This is called quantizing. That is, instead of using the exact sample value of

the analog waveform w kTs( ), the sample is replaced by the closest allowed value, where

there are M allowed values, and each allowed value corresponds to one of the code words.

3.4.1.1. Nonuniform quantizing: µ-Law and A-Law companding

Voice analog signals are more likely to have amplitude values near zero than at the extreme

peak values allowed. For example, when digitizing voice signals, if the peak value allowed
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is 1 V, weak passages may have voltage levels on the order of 0,1 V (20 dB down). For

signals, such as these, with nonuniform ampitude distribution, the granular quantizing

noise will be a serious problem if the step size is not reduced for amplitude values near

zero and increased for extremely large values. This is called nonuniform quantizing since a

variable step size is used.

The effect of nonuniform quantizing can be obtained by first passing the analog signal

through a compression (nonlinear) ampifier and then into the PCM circuit that uses a

uniform quantizer. In the United States a µ-law type of compression characteristic is used.

It is defined by:

| ( )|
ln( | ( )|)

ln( )
w t

w t
2

11

1
=

+
+

µ
µ

, (3.7)

where the allowed peak values of w1(t) are ± 1 and µ is a positive constant that is a

parameter. In the United States, Canada and Japan, the telephone companies use µ = 255

compression characteristic in their PCM systems.

Another compression law, used mainly in Europe, is the A-law characteristic. It is defined

by:
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Where | ( )|w t1 1≤  and A is a positive constant. The typical value for A is 87,6. In practice,

to approximate A = 87,6 characteristic with steps, let the height of all steps be ∆, then the

first 32 steps have step width set to ∆, the next 16 steps have width 2 ∆, followed by 64

steps of width 4 ∆, and, finally, 16 steps of width 64 ∆.

When compression is used at the transmitter, expansion (i.e., decompression) must be used

at the receiver output to restore signal levels to their correct relative values. The expandor

characteristic is the inverse of the compression characteristic, and the combination of a

compressor and an expandor is called a compandor [17].

3.4.1.2. PCM speech codec

Analog voice-frequency signal occupies a band from 300 to 3400 Hz. The minimum

sampling frequency would be 2*3,4 = 6,8 kHz. In practice the signal is oversampled and a
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sampling frequency of 8 kHz is the standard used for voice-frequency signals in telephone

communication systems. Each sample is presented with 8 bits thus yielding a bit rate of 64

kbit/s. Then µ- or A-law companding is used. More details can be found in [18].

3.4.2. Adaptive differential PCM (ADPCM)

ITU-T recommendation G.726 defines an ADPCM speech coder with four different bit

rates. The available bit rates are: 16, 24, 32 and 40 kbit/s. The different bit rates are

achieved by changing the quantizer mode between 2 to 5 bits.

3.4.2.1. ADPCM encoder

Subsequent to the conversion of the A-law or µ-law PCM input signal to uniform PCM, a

difference signal is obtained, by subtracting an estimate of the input signal from the input

signal itself. An adaptive 31-, 15-, 7-, or 4-level quantizer is used to assign five, four, three

or two binary digits, respectively, to the value of the difference signal for transmission to

the decoder. An inverse quantizer produces a quantized difference signal from these same

five, four, three or two binary digits, respectively. The signal estimate is added to this

quantized difference signal to produce the reconstructed version of the input signal. Both

the reconstructed signal and the quantized difference signal are operated upon by an

adaptive predictor which produces the estimate of the input signal, thereby completing the

feedback loop [19].

3.4.3. GSM 06.10 speech codec

Features of the GSM 06.10 speech codec are:

� Bit rate: 13 kbit/s

� Frame length: 160 samples = 20 ms

� 8th-order LPC analysis

� First-order long-term prediction filter

GSM speech codec is based on RPE-LTP (Regular Pulse Exctitation - Long Term

Prediction) algorithm.
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3.4.3.1. Principle of the RPE-LTP algorithm

The operation of the RPE-LTP algorithm can be divided in three operational parts:

1.  Short term prediction

Speech signal is processed by an 8th-order LPC analysis using autocorrelation method.

The residual signal given by LPC analysis is called short term residual.

2.  Long term prediction

In the case of a voiced speech, short term residual is left with an impulse structure. This

structure is removed with the long term predictor which is a first-order LPC filter that

makes the prediction from the sample that is one pitch-period away.

3.  Residual quantization

The most important feature to enable high compression in LPC-based codecs is the

rough quantization of the residual. In RPE-LTP the residual is decimated in the ratio of

1:3. Then the samples are quantized with only 3 bits [20].

3.4.4. G.723.1 speech codec

G.723.1 can be used for compressing the speech or other audio signal components of

multimedia services at a very low bit rate as part of the overall H.324 family of standards.

This coder has two-bit rates associated with it, 5.3 and 6.3 kbit/s. The higher bit rate has

greater quality. The lower bit rate gives good quality and provides system designers with

additional flexibility. Both rates are a mandatory part of the encoder and decoder. It is

possible to switch between the two rates at any frame boundary.

This coder was optimized to represent speech with high quality at the above rates using a

limited amount of complexity. It encodes speech or other audio signals in frames using

linear predictive analysis-by-synthesis coding. The excitation signal for the high rate coder

is Multipulse Maximum Likelihood Quantization (MP-MLQ) and for the low rate coder is

Algebraic-Code-Excited Linear-Prediction (ACELP). The frame size is 30 ms and there is

an additional look ahead of 7.5 msec, resulting in a total algorithmic delay of 37.5 msec.

3.4.4.1. Encoder principles

The coder is based on the principles of linear prediction analysis-by-synthesis coding and

attempts to minimize a perceptually weighted error signal. The encoder operates on blocks

(frames) of 240 samples each, which is equal to 30 msec at the 8 kHz sampling rate. Each
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block is first high pass filtered to remove the DC component and then divided into four

subframes of 60 samples each. For every subframe, a 10th order Linear Prediction Coder

(LPC) filter is computed using the unprocessed input signal. The LPC filter for the last

subframe is quantized using a Predictive Split Vector Quantizer (PSVQ). The unquantized

LPC coefficients are used to construct the short-term perceptual weighting filter, which is

used to filter the entire frame and to obtain the perceptually weighted speech signal. For

every two subframes (120 samples), the open loop pitch period, LOL, is computed using the

weighted speech signal. This pitch estimation is performed on blocks of 120 samples. The

pitch period is searched in the range from 18 to 142 samples.

From this point the speech is processed on a 60 samples per subframe basis. Using the

estimated pitch period computed previously, a harmonic noise-shaping filter is constructed.

The combination of the LPC synthesis filter, the formant perceptual weighting filter, and

the harmonic noise-shaping filter is used to create an impulse response. The impulse

response is then used for further computations.

Using the pitch period estimation, LOL, and the impulse response, a closed loop pitch

predictor is computed. A fifth order pitch predictor is used. The pitch period is computed

as a small differential value around the open loop pitch estimate. The contribution of the

pitch predictor is then subtracted from the initial target vector. Both the pitch period and

the differential value are transmitted to the decoder.

Finally the non-periodic component of the excitation is approximated. For the high bit rate,

Multi-pulse Maximum Likelihood Quantization (MP-MLQ) excitation is used, and for the

low bit rate, an algebraic-code-excitation (ACELP) is used [21].

3.4.5. G.729 speech codec

The CS-ACELP coder is based on the Code-Excited Linear-Prediction (CELP) coding

model. The coder operates on speech frames of 10 ms corresponding to 80 samples at a

sampling rate of 8000 samples per second. For every 10 ms frame, the speech signal is

analysed to extract the parameters of the CELP model (linear-prediction filter coefficients,

adaptive and fixed-codebook indices and gains). These parameters are encoded and

transmitted.
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At the decoder, these parameters are used to retrieve the excitation and synthesis filter

parameters. The speech is reconstructed by filtering this excitation through the short-term

synthesis filter. The short-term synthesis filter is based on a 10th order Linear Prediction

(LP) filter. The long-term, or pitch synthesis filter is implemented using the so-called

adaptive-codebook approach. After computing the reconstructed speech, it is further

enhanced by a postfilter.

3.4.5.1. Encoder principles

The input signal is high-pass filtered and scaled in the pre-processing block. The pre-

processed signal serves as the input signal for all subsequent analysis. LP analysis is done

once per 10 ms frame to compute the LP filter coefficients. These coefficients are

converted to Line Spectrum Pairs (LSP) and quantized using predictive two-stage Vector

Quantization (VQ) with 18 bits. The excitation signal is chosen by using an analysis-by-

synthesis search procedure in which the error between the original and reconstructed

speech is minimized according to a perceptually weighted distortion measure. This is done

by filtering the error signal with a perceptual weighting filter, whose coefficients are

derived from the unquantized LP filter. The amount of perceptual weighting is made

adaptive to improve the performance for input signals with a flat frequency-response.

The excitation parameters (fixed and adaptive-codebook parameters) are determined per

subframe of 5 ms (40 samples) each. The quantized and unquantized LP filter coefficients

are used for the second subframe, while in the first subframe interpolated LP filter

coefficients are used (both quantized and unquantized). An open-loop pitch delay is

estimated once per 10 ms frame based on the perceptually weighted speech signal. Then the

following operations are repeated for each subframe.

The target signal x(n) is computed by filtering the LP residual through the weighted

synthesis filter W(z)/Â(z). The initial states of these filters are updated by filtering the error

between LP residual and excitation. This is equivalent to the common approach of

subtracting the zero-input response of the weighted synthesis filter from the weighted

speech signal. The impulse response h(n) of the weighted synthesis filter is computed.

Closed-loop pitch analysis is then done (to find the adaptive-codebook delay and gain),

using the target x(n) and impulse response h(n), by searching around the value of the open-

loop pitch delay. A fractional pitch delay with 1/3 resolution is used. The pitch delay is
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encoded with 8 bits in the first subframe and differentially encoded with 5 bits in the

second subframe. The target signal x(n) is updated by subtracting the (filtered) adaptive-

codebook contribution, and this new target, x′(n), is used in the fixed-codebook search to

find the optimum excitation. An algebraic codebook with 17 bits is used for the fixed-

codebook excitation. The gains of the adaptive and fixed-codebook contributions are vector

quantized with 7 bits, (with MA prediction applied to the fixed-codebook gain). Finally,

the filter memories are updated using the determined excitation signal [22].
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4. PLAYOUT DELAY ADJUSTMENT

Packet audio tools operate by periodically gathering audio samples generated at the sending

host, packetizing them, and transmitting the resulting packet to receiving site(s). For

efficiency, the source audio is typically divided into talkspurts (periods of audio activity)

and silence periods (periods of audio inactivity, during which no audio packets are

generated). In order to faithfully reconstruct the audio at the receiving site, data in packets

within a talkspurt must be played out in the same periodic manner in which they were

generated.

If the underlying network is free of variations (jitter) in packet delays, a receiving site can

simply play out an audio packet as soon as it is received. However, jitter-free, in-order, on-

time packet delivery rarely, if ever, occurs in today’s packet-switched networks. In order to

compensate for these variable delays, a smoothing buffer is thus typically used at a

receiver. Received packets are first queued into the smoothing buffer and the periodic

playout of packets within a talkspurt is delayed for some amount of time beyond the

reception of the first packet in the talkspurt. We refer to this delay as the playout delay of

the talkspurt. Clearly, the longer the playout delay, the more likely it is that a packet will

have arrived before its scheduled playout time. Excessively long playout delays, however,

can significantly impair human conversations. There is thus a critical tradeoff between the

length of playout delay and the amount of loss (due to late packet arrival) that is incurred.

Generally, delays between talkspurt generation and receiver playout of less than 400 ms

[23] and a loss percentage of up to 5% [24] are considered to be quite tolerable in human

conversations.

The talkspurt playout delays themselves can be either fixed for the duration of the audio

session, or adaptively adjusted. In the Internet, end-to-end delays fluctuate significantly and

a constant, non-adaptive, playout delay would thus likely yield unsatisfactory audio quality

for interactive audio applications. There are two approaches for adaptive playout

adjustment: per-talkspurt and per-packet adjustment. The former uses the same playout

delay throughout a talkspurt (and, as a result, faithfully reconstructs the original periodic

nature of the received audio data from the sender), but allows different playout delays from

one talkspurt to another. While this may result in artificially elongated or compressed

silence periods, this is not noticeable in played out speech if the change is reasonably small
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[25]. In the latter approach, the playout delay varies from packet to packet. A  per-packet

adaptive adjustment introduces gaps inside talkspurts and is cited as being damaged to the

audio quality [26].

This chapter presents observations in the end-to-end delay characteristics of the Internet

that are applied in playout algorithms, the mathematics and formulas needed to evaluate

playout algorithms and finally the principles of three different playout algorithms are

presented.

4.1. End-to-end delay characteristics

Previous studies [27] have indicated the presence of “spikes” in end-to-end Internet delays.

A spike constitutes a sudden, large increase in the end-to-end network delay, followed by a

series of packets arriving almost simultaneously, leading to the completion of the spike.

Figure 4-1 depicts a typical spike. Each point shown represents a packet arriving at the time

indicated by its x-axis value, having experienced an end-to-end network delay equal to the

y-axis value [28].

With periodically generated packets, the initial steep rise in the delay spike and the linear,

monotonic decrease spike after the initial rise, is due to “probe compression” – the

accumulation of a number of packets from the connection under consideration (the audio

session, in our case) in a router queue behind a large number of packets from other sources.

Probe compression is a plausible conjecture about the cause(s) of delay spikes.

Note that when a delay spike is properly contained within a talkspurt, the next opportunity

to change the playout delay (i.e., at the beginning of the next talkspurt) occurs after the

delay spike terminates. In such a case, it is not possible to adaptively react to the delay

spike, since the delay spike is already over (i.e., the delay has returned to its baseline value)

by the next talkspurt and any packets that were so excessively delayed during the delay

spike that they missed their playout time have already been lost. In cases where a delay

spike spans multiple talkspurts, however, it is advantageous to quickly react to the delay

spike. Note also that the “baseline” delays fluctuate less compared to spikes and as a result

their delay distribution does not change significantly over time.
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Figure 4-1: A typical spike

4.2. Performance of a playout algorithm

The tradeoff between the average playout delay and loss due to late packet arrival is used as

the performance measure in comparing one adaptive playout delay adjustment algorithm

with another. Loss and delay are considered on a per-packet rather than per-talkspurt basis

for two reasons. First we note that the lengths of talkspurts depend on silence detection

algorithms and their parameters. Per-talksurt results are thus closely tied to the silence

detection algorithm used. More importantly, different talkspurts have different lengths.

Here a playout delay (or, more accuretely, end-to-end application-to-application delay) is

defined to be the difference between the playout time at the receiver and the generation

time at the sender. We refer to Figure 4-2 to show the timing information of audio packets

and formally define the average playout delay [29].
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Figure 4-2: Timings associated with the i-th packet in the k-th talkspurt
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Consider a trace consisting of M talkspurts. We define the following quantities:

- i
kt : sender timestamp of the i-th packet in the k-th talkspurt

- i
ka : receiver timestamp of the i-th packet in the k-th talkspurt

- kn : number of packets in the k-th talkspurt. Here we only consider those packets

actually received at the receiver.

- N: total number of packets in a trace,
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The playout time of a packet depends on which algorithm is used at the receiver to estimate

the playout delay of the packet. Consider a playout algorithm A. Then )(Api
k  is the playout

timestamp of the i-th packet in the k-th talkspurt under A. If the i-th packet of the k-th

talkspurt arrives later than )(Api
k  (i.e., )(Api

k < i
ka ), it is considered lost. Otherwise, it is

played out with the playout delay of ( )(Api
k - i

kt ). Let i
kr (A) be an indicator variable for

whether the i-th packet of the k-th talkspurt arrives before its playout time, as computed by

playout algorithm A:
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The total number of packets played under algorithm A is denoted as N(A) and computed

using i
kr (A):
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Then the average playout delay of those played-out packets is defined as:
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If there are N packets in a trace and, among them, N(A) packets are played out under

algorithm A, the loss percentage l is:
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4.3. Some playout algorithms

In this section we present 3 different playout algorithms. Algorithms 1 and 2 are originally

reported in [28] and algorithm 3 is suggested in [29]. We introduce the following

terminology to be used with these algorithms:

i
kd̂ : delay between the generation of the i-th packet of the k-th talkspurt at the sender and

its reception at the receiver, namely:

i
k

i
k

i
k tad −=ˆ (4.6)

We do not need to assume that the sender and receiver clocks are synchronized, but do

need to assume that they do not drift. The playout delay of all packets in the k-th talkspurt

should be the same due to the periodic nature of packet generation within a talkspurt at the

sender and periodic playout at the receiver. Given an algorithm A, we denote the playout

delay of the k-th talkspurt as )(ˆ Apk  The playout time of the i-th packet in the k-th

talkspurt is then:
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4.3.1. Algorithm 1

This algorithm is based on stochastic gradient algorithms used in estimation and control

theory [30], and operates by estimating two statistics characterizing the network delay

incurred by audio packets: the delay itself, and a variational measure of the observed

delays. Each of these estimates is recomputed each time a new packet arrives. The

mathematical description of algorithm 1 is presented in Figure 4-3.
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Figure 4-3: Algorithm 1

Let i
kû  and i

kv̂  be an estimate of the packet delay and variational measure of the i-th packet

of the k-th talkspurt. At the beginning of a new talkspurt, the playout delay )(ˆ Apk  is

estimated as follows:
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Here β is a variation coefficient and provides some slack in playout delay for arriving

packets. The larger the coefficient, the more packets that are played out at the expense of

longer playout delays. It is thus a parameter that can be used to control the delay/loss

tradeoff.

Algorithm 1 is a linear filter that is slow in catching up with a change in delays, but is good

at maintaining a steady value, when (1-α), the gain of the estimator, is set to be very low.

4.3.2. Algorithm 2

Algorithm 2 shown in Figure 4-4 has two modes of operation, depending on whether a

spike has been detected. In normal mode, it operates like algorithm 1 with a different gain,

but in spike-detection mode, ikû  is updated differently.

Algorithm 2 works as follows: In line 2 it is checked if the delay between consecutive

packets at the receiver is large enough for it to be called a spike. Once we enter the spike

mode on detection of a spike, it seems natural to “follow” the spike. Thus, in spike mode,

we allow our estimate to be dictated only by the most recently observed delay values.

The detection of the completion of a spike is a bit tricky. For example, it was observed that

in certain cases the delay on completion of the spike was different from the delay before

the beginning of the spike. Nonetheless, one prominent characteristics was that a series of

packets would arrive one after another almost simultaneously at the receiver, and almost

immediately following the observed increase in delay. Since the packets within a talkspurt

are transmitted at regular intervals at the sender, near simultaneous arrivals implies that

subsequent packets in the burst of arrivals have experienced progressively smaller end-to-

end network delays. Thus a variable var is employed with an exponentially decaying value

that adjusts to the slope of spike. When this variable has a small enough value, indicating

that there is no longer a significant slope, the algorithm reverts back to normal mode.
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IF  (mode = = NORMAL)

    IF  ( | |ˆˆ 1−− i
k

i
k dd  > | 1ˆ −i

kv | * 2 + 800)

        var = 0;

        mode = SPIKE;

ELSE

    var = var/2 + | 8/)ˆˆ(8/)ˆˆ( 21 −− −+− i
k

i
k

i
k

i
k dddd |;

    IF  (var ≤ 63)

        Mode = NORMAL;

        12 ˆˆ −− = i
k

i
k dd ;

        i
k

i
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        return;

IF (mode = = NORMAL)

    1ˆ*875,0ˆ*125,0ˆ −+= i
k

i
k

i
k udu ;

ELSE

    ;ˆˆˆˆ 11 −− −+= i
k

i
k

i
k

i
k dduu

;ˆ*875,0|ˆˆ|*125,0ˆ 1−+−= i
k

i
k

i
k

i
k vudv

;ˆˆ

;ˆˆ

1

12

i
k

i
k

i
k

i
k

dd

dd

=

=
−

−−

return;

Figure 4-4: Algorithm 2

4.3.3. Algorithm 3

The key idea behind this algorithm is to collect statistics on packets that have already

arrived and to use them to estimate the playout delay. Instead of using the linear filter

mechanism, each packet’s delay is logged and the distribution of packet delays is updated

at every packet arrival. When a new talkspurt starts, the algorithm calculates a given

percentile point q in the distribution function of the packet delays for the last w packets,

and uses it as the playout delay for the new talkspurt. As in algorithm 2, it detects spikes

and behaves accordingly: once a spike is detected, it stops collecting packet delays and
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follows the spike until it detects the end of a spike. Upon detecting the end of a delay spike,

it resumes its normal operation.

Algorithm 3 operates in two modes. For every packet that arrives at the receiver, the

algorithm checks the current mode and, if necessary, switches its mode to the other in lines

1-7 of Figure 4-5. Lines 9-22 update the delay distribution in normal mode. If a packet

arrives with a delay that is larger than some multiple of the current playout delay, the

algorithm switches to spike-detection mode. The end of a spike is detected in a similar

way: if the delay of a newly arrived packet is less than some multiple of the playout delay

before the current spike, the mode is set back to normal. Two parameters head and tail are

used in lines 5 and 2 in detecting the beginning and end of a spike.
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(1) IF  (mode = = SPIKE)

(2)    IF ( ≤k
id̂  tail * old_d)  /* the end of a spike */

(3)       mode = = normal;

(4)   ELSE

(5)      IF  ( k
i
k pheadd ˆ*ˆ > )   /* the beginning of a spike */

(6)         mode = SPIKE;

(7)         old_d = kp̂ ;   /* save kp̂  to detect the end of a spike later */

(8)      ELSE

(9)         IF  (delays[curr_pos] ≤ curr_delay)

(10)    count -= 1;

(11)       distr_fcn[delays[curr_pos]] -= 1;

(12)       delays[curr_pos] =i
kd̂ ;

(13)       curr_pos = (curr_pos+1) % w;

(14)       distr_fcn[ i
kd̂ ] += 1;

(15)       IF (delays[curr_pos] < curr_delay)

(16)          count += 1;

(17)       WHILE  (count < w*q)

(18)          curr_delay += unit;

(19)          count += distr_fcn[curr_pos];

(20)       WHILE  (count > w*q)

(21)          curr_delay -= unit;

(22)          count -= distr_fcn[curr_pos];

Figure 4-5: Algorithm 3

Depending on the current mode, the playout delay for the next talkspurt is estimated

differently in each mode as shown in Figure 4-6. In spike-detection mode, the delay of the

first packet of a talkspurt becomes the estimated playout delay for the talkspurt. Otherwise,

curr_delay, which is the given percentile point of delay based on previous statistics of

packet delays, is used.
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(1) IF  (mode = = SPIKE)

(2)    ;ˆˆ 1
kk dp =

(3) ELSE (mode = = NORMAL)

(4)    ;_ˆ delaycurrpk =

Figure 4-6: Playout delay estimation of algorithm 3

The problem with this algorithm is that it takes some time to collect the delay statistics.

Until w packets are received, playout delays have to be calculated using some other

method.
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5. OPERATING SYSTEMS AND SCHEDULING

In a workstation, many applications are often running simultaneously. Therefore, operating

system and its scheduler is responsible of allocating resources, such as CPU time, to the

applications. The used scheduling policy determines how this is done.

In this chapter we present the concepts of operating system and processes. We continue

with presenting the most used scheduling policies, and finally the Unix process scheduler is

introduced.

5.1. Operating system

Computer software can be roughly divided into two kinds: the system programs, which

manage the operation of the computer itself, and the application programs, which solve

problems for their users. The most fundamental of all the system programs is the operating

system, which controls all the computer’s resources and provides the base upon which the

application programs can be written.

A modern computer system consists of one or more processors, some main memory,

clocks, terminals, disks, network interfaces, and other input/output devices. All in all, a

complex system. Writing programs that keep track of all these components and use them

correctly, let alone optimally, is an extremely difficult job. If every programmer had to be

concerned with how disk drives work, and with all the dozens of things that could go

wrong when reading a disk block, it is unlikely that many programs could be written at all.

Many years ago it became abundantly clear that some way had to be found to shield

programmers from the complexity of the hardware. The way that has gradually evolved is

to put a layer of software on top of the bare hardware, to manage all parts of the system,

and present the user with an interface or virtual machine that is easier to understand and

program. This layer of software is the operating system. The situation is shown in Figure

5-1 [31].
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Figure 5-1: A computer system consists of hardware, system programs, and application programs

5.2. Processes

A key concept in all operating systems is the process. A process is basically a program in

execution. It consists of the executable program, the program’s data and stack, its program

counter, stack pointer, and other registers, and all the other information needed to run the

program.

Periodically, the operating system decides to stop running one process and start running

another, for example, because the first one has had more than its share of CPU time in the

past second. When a process is temporaliry suspended like this, it must later be restarted in

exactly the same state it had when it was stopped. This means that all information about the

process must be explicitly saved somewhere during the suspension. For example, if the

process has several files open, the exact position in files where the process was must be

recorded somewhere, so that a subsequent READ given after the process is restarted will

read the proper data. In many operating systems, all the information about each process,

other than the contents of its own address space, is stored in an operating system table

called the process table, which is an array (or linked list) of structures, one for each process

currently in existence.

Thus, a (suspended) process consists of its address space, usually called the core image,

and its process table entry, which contains its registers, among other things [31].
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5.3. Process scheduling

When more than one process is runnable, the operating system must decide which one to

run first. The part of the operating system concerned with this decision is called the

scheduler, and the algorithm it uses is called the scheduling algorithm.

Before looking at specific scheduling algorithms, we should think about what the scheduler

is trying to achieve. After all, the scheduler is concerned with deciding on policy, not

providing a mechanism. Various criteria come to mind as to what constitutes a good

scheduling algorithm. Some of the more obvious possibilities include:

1.  Fairness: make sure each process gets its fair share of the CPU.

2.  Efficiency: keep the CPU busy 100 percent of the time.

3.  Response time: minimize response time for interactive users.

4.  Turnaround: minimize the time batch users must wait for output.

5.  Throughput: maximize the number of jobs processed per hour.

A little thought will show that some of these goals are contradictory. To minimize response

time for interactive users, the scheduler should not run any batch jobs at all. It can be

shown that any scheduling algorithm that favors some class of jobs hurts another class of

jobs. The amount of CPU time available is finite, after all.

A complication that schedulers have to deal with is that every process is unique and

unpredictable. Some spend a lot of time waiting for file I/O, while others would use the

CPU for hours at a time if given the chance. When the scheduler starts running some

process, it never knows for sure how long it will be until that process blocks, either for I/O,

or on a semaphore, or for some other reason. To make sure that no process runs too long,

nearly all computers have an electronic timer or clock built in, which causes an interrupt

periodically. A frequency of 50 or 60 times a second is common, but on many computers

the operating system can set the timer frequency to anything it wants. At each clock

interrupt, the operating system gets to run and decide whether the currently running process

should be allowed to continue, or whether it has had enough CPU time for the moment and

should be suspended to give another process the CPU.

The strategy of allowing processes that are logically runnable to be temporarily suspended

is called preemptive scheduling, and in contrast to the run to completion method of the

early batch systems. Run to completion is also called nonpreemptive scheduling.
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5.3.1. Round robin scheduling

One of the oldest, simpest, fairest, and most widely used algorithms is round robin. Each

process is assigned a time interval, called its quantum, which it is allowed to run. If the

process is still running at the end of the quantum, the CPU is preempted and given to

another process. If the process has blocked or finished before the quantum has elapsed, the

CPU switching is done when the process blocks, of course. Round robin is easy to

implement. All the scheduler needs to do is maintain a list of runnable processes. When the

quantum runs out on a process, it is put at the end of the list.

5.3.2. Priority scheduling

Round robin scheduling makes the implicit assumption that all processes are equally

important. Frequently, the people who own and operate computer centers have different

ideas on that subject. The need to take external factors into account leads to priority

scheduling. The basic idea is straightforward: each process is assigned a priority, and the

runnable process with the highest priority is allowed to run.

To prevent high-priority processes from running indefinitely, the scheduler may decrease

the priority of the currently running process at each clock tick (i.e., at each clock interrupt).

If this action causes its priority to drop below that of the next highest process, a process

switch occurs.

Priorities can be assigned to processes statically or dynamically. Priorities can be assigned

dynamically by the system to achieve certain system goals. For example, some processes

are highly I/O bound and spend most of their time waiting for I/O to complete. Whenever

such a process wants the CPU, it should be given the CPU immediately, to let it start its

next I/O request, which can then proceed in parallel with another process actually

computing. Making the I/O bound process wait a long time for the CPU will just mean

having it around occupying memory for an unnecessary long time. A simple algorithm for

giving good service to I/O bound processes is to set the priority to 1/f, where f is the

fraction of the last quantum that a process used. A process that used only 2 ms of its 100

ms quantum would get priority 50, while a process that ran 50 ms before blocking would

get priority 2, and a process that used the whole quantum would get priority 1.

It is often convenient to group processes into priority classes and use priority scheduling

among these classes but round robin scheduling within each class.
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5.3.3. Guaranteed scheduling

A completely different approach to scheduling is to make real promises to the user about

performance and then live up to them. One promise that is realistic to make and easy to live

up is this: If there are n users logged in while you are working, you will receive about 1/n

of the CPU power.

To make good on this promise, the system must keep track of how much CPU time a user

has had for all his processes since login, and also how long each user has been logged in. It

then computes the amount of CPU each user is entitled to, namely the time since login

divided by n. Since the amount of CPU time each user has actually had is also known, it is

straightforward to compute the ratio of actual CPU had to CPU time entitled. A ratio of 0,5

means that a process has only had half of what it should have had, and a ratio of 2,0 means

that a process has had twice as much as it was entitled to. The algorithm is then to run the

process with the lowest ratio until its ratio has moved above its closest competitor.

A similar idea can be applied to real-time systems, in which there are absolute deadlines

that must be met. Here one looks for the process in greatest danger of missing its deadline,

and runs it first. A process that must finish in 10 seconds gets priority over one that must

finish in 10 minutes.

5.3.4. Two-level scheduling

If insufficient main memory is available, some of the runnable processes will have to be

kept on disk. This situation has major implications for scheduling, since the process

switching time to bring in and run a process from disk is orders of magnitude more than

switching to a process already in main memory.

A more practical way of dealing with swapped out processes is to use a two-level

scheduler. Some subset of the runnable processes is first loaded into main memory. The

scheduler then restricts itself to only choosing processes from this subset for a while.

Periodically, a higher-level scheduler is invoked to remove processes that have been in

memory long enough and to load processes that have been on disk too long. Once the

change has been made, the lower-level scheduler again restricts itself to only running

processes that are actually in memory. Thus, lower-level scheduler is concerned with

making a choice among the runnable processes that are in memory at the moment, while
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the higher-level scheduler is concerned with shuttling processes back and forth between

memory and disk.

Among the criteria that the higher-level scheduler could use to make its decicions are the

following ones:

1.  How long has it been since the process was swapped in or out?

2.  How much CPU time has the process had recently?

3.  How big is the process? (Small ones do not get in the way.)

4.  How high is the priority of the process?

Again here we could use round robin, priority scheduling, or any of various other methods

[31].

5.4. Unix process scheduler

The UNIX system scheduler determines when processes run. It maintains process priorities

based on configuration parameters, process behaviour, and user requests; it uses these

priorities to assign processes to the CPU.

The SunOS 5.x system gives users absolute control over the order in which certain

processes run and the amount of time each process can use the CPU before another process

gets a chance. By default, the scheduler uses a time-sharing policy. A time-sharing policy

adjusts process priorities dynamically to provide good response time to interactive

processes and good throughput to processes that use a lot of CPU time.

The SunOS 5.x system scheduler offers a realtime scheduling policy as well as a time

sharing policy. Realtime scheduling allows users to set fixed priorities on a per-process

basis. The highest-priority realtime user process always gets the CPU as soon as the

process is runnable, even if system processes are runnable. A program can therefore specify

the order in which processes run. A program can also be written so that its realtime

processes have a guaranteed response time from the system.

For most UNIX environments, the default scheduler configuration works well and no

realtime processes are needed. However, when the requirements for a program include

strict timing constraints, realtime processes sometimes provide the only way to satisfy

those constraints [32].
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5.4.1. Scheduling classes

The SunOS 5.x kernel dispatches processes by priority. The scheduler supports the concept

of scheduling classes. Classes are defined as realtime (RT), system (SYS), and time-

sharing (TS). Each class has a unique scheduling policy for dispatching processes within its

class. Figure 5-2 illustrates the concept of classes as viewed by the SunOS 5.x kernel.

Figure 5-2: Dispatch priorities for scheduling classes

At highest priority are the hardware interrupts; these cannot be controlled by software. The

interrupt processing routines are dispatched directly and immediately from interrupts,

without regard to the priority of the current process.

Realtime processes have the highest default software priority. Processes in the RT class

have a priority and time quantum value. RT processes are scheduled strictly on the basis of

these parameters. As long as an RT process is ready to run, no SYS or TS process can run.

Fixed priority scheduling allows critical processes to run in a predetermined order until

completion. These priorities never change unless an application changes them.

An RT class process inherits the parent’s time quantum, whether finite or infinite. A

process with a finite time quantum runs until the time quantum expires or the process

terminates, blocks (while waiting for an I/O event) or is preempted by a higher priority

runnable real-time process. A process with an infinite time quantum ceases execution only

when it terminates, blocks, or is preempted.

The SYS class exists to schedule the execution of special system processes, such as paging,

STREAMS, and the swapper. It is not possible to change the class of a process to the SYS
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class. The SYS class of processes has fixed priorities established by the kernel when the

processes are started.

At lowest priority are the time-sharing (TS) processes. TS class processes are scheduled

dynamically, with a few hundred milliseconds for each time slice. The TS scheduler

switches context in round robin fashion often enough to give every process an equal

opportunity to run, depending upon its time slice value, its process history (when the

process was last put to sleep), and considerations for CPU utilization. Default time-sharing

policy gives larger time slices to processes with lower priority.

Different algorithms dispatch each scheduling class. Class dependent routines are called by

the kernel to make decisions about CPU process scheduling. The kernel is class-

independent, and takes the highest priority process off its queue. Each class is responsible

for calculating a process’ priority value for its class. This value is placed into the dispatch

priority variable of that process.

Each class has a set of priority levels that apply to processes in that class. A class-specific

mapping maps these priorities into a set of global priorities. It is not required that a set of

global scheduling priority maps start with zero, nor that they be contiguous [32].

5.4.2. Dispatch latency

The most significant element in scheduling behaviour for realtime applications is the

provision of a realtime scheduling class. The standard time-sharing scheduling class is not

suitable for realtime applications because this scheduling class treats every process equally

and has a limited notion of priority. Realtime applications require a scheduling class in

which process priorities are taken as absolute and are changed only by explicit application

operations.

The term dispatch latency describes the amount of time it takes for a system to respond to a

request for a process to begin operation. With a scheduler written specifically to honor

application priorities, realtime applications can be developed with a bounded dispatch

latency. Figure 5-3 illustrates the amount of time it takes an application to respond to a

request from an external event.

The overall application response time is composed of the interrupt response time, the

dispatch latency, and the time it takes the application itself to determine its response. The
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interrupt response time for an application includes both the interrupt latency of the system

and the device driver’s own interrupt processing time. The interrupt latency is determined

by the longest interval that the system must run with interrupts disabled; this is minimized

in SunOS 5.x using synchronization primitives that do not commonly require a raised

processor interrupt level [32].

Figure 5-3: Application response time

During interrupt processing, the driver’s interrupt routine wakes up the high priority

process and returns when finished. The system detects that a process with higher priority

than the interrupted process is now dispatchable and arranges to dispatch that process. The

time to switch context from a lower priority process to a higher priority process is included

in the dispatch latency time.

Figure 5-4 illustrates the internal dispatch latency / application response time of a system,

defined in terms of the amount of time it takes for a system to respond to an internal event.

The dispatch latency of an internal event represents the amount of time required for one

process to wake up another higher priority process, and for the system to dispatch the

higher priority process.

The application response time is the amount of time it takes for a driver to wake up a

higher priority process, have a low priority process release resources, reschedule the higher

priority task, calculate the response, and dispatch the task.
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With the scheduling techiniques provided with realtime SunOS 5.x, the system dispatch

latency is within specified bounds. Tests for dispatch latency and experience with such

critical environments as manufacturing and data acquisition have proven that the Sun

workstation is an able platform for the development of realtime applications [32].

Figure 5-4: Internal dispatch latency
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6. MEASUREMENTS AND RESULTS

In this chapter we present the experimental research concerning this thesis. The work is

divided in three parts. First part handles the processor time consumption in an IP voice

terminal, the second part handles the end-to-end delays in an IP voice connection, and in

the third part different playout algorithms are compared. The used VoIP client in all

experiments is Nevot (Network Voice Terminal) [3]. Nevot was chosen because of its high

configurability compared with other VoIP tools. Nevot provides for example a feature to

switch off the additional playout delay for testing purposes. Nevot’s source codes are freely

downloadable in the Internet, which made it possible to compile it from sources and

examine the program implementation in practise. Thirdly, Nevot provides a debugging

option to record sent and received RTP-headers which is useful for playout algorithm

simulations.

6.1. Measurement of the CPU consumption

We wanted to know how much processor time is consumed by Nevot using different audio

codecs. In order to do this, version 3.35 of Nevot was compiled from sources using -p flag.

This enables us after running the program by using the prof command to produce a profile

file which shows for each external text symbol the number of times that function was

called and the average amount of time per call.

Nevot provides the following speech codecs:

- PCM 64 kbit/s

- ADPCM  32 kbit/s

- GSM 13 kbit/s

- LPC 4,8 kbit/s

Like presented in Chapter 3, PCM and ADPCM are computationally light codecs compared

to GSM and LPC, which are very computationally intensive.

6.1.1. Setup of the measurement

We had two Sun Ultra Enterprise 1 workstations connected to a 10BaseT Ethernet.

Configuration of the workstations is presented in Table 6-1.
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Table 6-1: Configuration of the workstations

CPUs 1

Clock speed 167 MHz

On chip cache 16 KB I-cache + 16 KB D-cache

External cache 512 KB

SPECint95 5,56

SPECfp95 9,06

Main memory 64 MB

Operating system SunOS 5.5.1

For comparison, performance values for an upscale PC (Intel AL440LX motherboard

(233MHz)) are: SPECint95: 9,47, and SPECfp95: 7,04 [33].

Both workstations were running Nevot version 3.35 for 5 minutes in each measurement.

Packet sizes were set to 20 ms and silence detection was disabled so that both clients were

continuously sending and receiving packets. Other settings of the program were as

following:

Automatic gain control: enabled

� time constant: 10,0 s.

� low volume: -40 dB

� high volume: -10 dB

Echo suppression: enabled

Volume meter: enabled

� update interval: 3 packets

� update threshold: 2,0 dB

Delay adjustment: enabled

� time constant: 10 packets

� initial delay: 0,10 s

� minimum delay: 0,01 s

� maximum delay: 5,00 s

� variance multiplier: 4

� packet late = talkspurt: disabled

Timeouts:

� soft timeout: 4 intervals

� hard timeout: 20 intervals
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6.1.2. Results of the measurements

In the first measurement audio coding was set to PCM. Profile file for this measurement is

shown in Appendix 1. Total amount of used CPU time is shown to be 3,17 seconds.

However, the resolution of the workstation clock sets constrains to this measurement. In

Sun Ultra Enterprise1 the resolution of the clock is1 µs. Thus function calls that last less

than this are not taken into account at all. We can manually calculate an upper limit for the

used CPU time by approximating all function calls that on average are shown to be below

one microsecond to 1 µs. This approximation gives additional 0,71 seconds yielding total

of  3,88 seconds of used CPU time.

There are also few function calls where the number of function calls and and average time

of the call is not shown. These functions belong to some libraries that are not compiled

themselves with -p flag and therefore this information is not available. These libraries are

libgsm.a, libtk.a and libtcl.a. Some of these functions might also belong to those whose

approximate executíon time is below the workstation clock resolution, and are not

considered in the error approximation. However, this source of error is obviously relatively

small and the calculations performed here should be quite accurate.

We can see that function tx_packet is entered 15190 times during measurement. When we

divide total used CPU time with this number, we get the used CPU time per one 20 ms

packetization interval which is 0,26 milliseconds. This means that the program is

consuming only 0,26/20 = 1,3 percent of the total CPU time using PCM audio coding.

In the next measurement we changed the audio coding to ADPCM. Profile file for this

measurement is shown in Appendix 2. Now the total amount of used CPU time is 6,63

seconds. After adding approximated correction of 0, 80 seconds yields 7,43 seconds total

used CPU time. When we divide this with the number of sent packets (15221) we get 0,49

ms which is the consumed CPU time per one 20 ms packetization interval. Thus the

program is now consuming 0,49/20 = 2,5 percent of the total CPU time.

In the third measurement the audio coding is changed to GSM. Profile file for this

measurement is shown in Appendix 3. Similarly as in two earlier measurements, we

compute the total used CPU time which is 17,25 seconds with the added correction. Used

CPU time per packet is 17,25/15137 = 1,14 ms. The program is now consuming 1,14/20 =

5,7 percent of the total CPU time.
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Finally in the fourth measurement the audio coding is changed to LPC. Profile file for this

measurement is shown in Appendix 4. Total used CPU time with approximated correction

is 27,65 seconds which yields 27,65/15120 = 1,83 ms per packet and is 1,83/20 = 9,1

percent of the total CPU time. The results of these four measurements are summarized in

Table 6-2.

Table 6-2: Used CPU time in milliseconds and percent of used CPU time from total CPU time with

different audio codings

Used CPU time PCM ADPCM GSM LPC

in milliseconds 0,26 0,49 1,14 1,83

in percent 1,3 2,5 5,7 9,1

These results show that the processing delay increases with the complexity of the codec.

However, the used workstations are so powerful that even with an LPC codec the used

CPU time stays under 10 % of the total time. In this measurement both workstations were

transmitting and receiving packets and the values in Table 6-2 include both coding and

decoding in one workstation. Thus the contribution of the processing delays in the end-to-

end delay stay under 4 ms with any available codec.

6.2. Measurement of the end-to-end delay

6.2.1. Setup of the measurement

In this measurement we had two Sun Ultra Enterprise1 workstations with SunOS 5.5.1

connected to a 10BaseT Ethernet (see Fig. 6-1). Both workstations were running Nevot

version 3.35. Delays were measured with four different audio codings. For each audio

coding both half-duplex and full-duplex traffic was measured. We also used two different

process priorities for Nevot to see if the operating system has some contribution to the

delay. Used priorities were normal time-shared class priority with user priority 0 and

realtime priority with the highest possible priority 59 and time slice of 1 second. Each type

of measurement was repeated 10 times. Packet size was set to 20 ms in all measurements.

We used a function generator to generate a 1 kHz square wave and fed it to the microphone

input of the first workstation. This signal was also fed to the first channel of the

oscilloscope. From the other workstation’s headphones output the signal was taken to the
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second input of the oscilloscope. When the function generator was switched on, it triggered

the oscilloscope and the total end-to-end delay could be read from the oscilloscope screen.

Figure 6-1: Setup of the end-to-end measurement

In the Nevot of the first workstation we had the following settings:

Automatic gain control: enabled

� time constant: 10,0 s.

� low volume: -40 dB

� high volume: -10 dB

Echo suppression: enabled

Silence detection: enabled

� before talkspurt: 0 packets

� after talkspurt: 0 packets

� threshold incrementation: 0.00 dB

� minimum threshold: - 12.0 dB

� maximum threshold: 0.0 dB

� hysteresis: 0.0 dB

� echo suppression: 3.0 dB

Volume meter: enabled

� update interval: 3 packets

� update threshold: 2,0 dB

Delay adjustment: disabled

Timeouts:

� soft timeout: 4 intervals
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� hard timeout: 20 intervals

It is important to note that silence detection was enabled and packets before talkspurt were

set to 0. This means that we were measuring the delay of the first packet in talkspurt which

contains data and no silent packets were sent before it. Also the minimum threshold must

be high enough that noise doesn’t trigger the talkspurt and distort the results of the

measurement. It is also important that delay adjustment was disabled in this measurement.

In the other workstation, the settings were the same except that when we were measuring

full duplex traffic silence detection was off and thus during the measurement both

workstations were both sending and receiving packets. During the measurements of half-

duplex traffic the other workstation was only receiving packets.

6.2.2. Results of the measurements

Resuls of each used audio coding are presented in Tables 6-3 - 6-6. Results are summarized

in Table 6-7.

Table 6-3: End-to-end delays using PCM audio coding

TS, half duplex [ms] TS, full duplex [ms] RT, half duplex [ms] RT, full duplex [ms]

32 34 31 31

33 32 30 31

31 32 31 32

31 32 31 32

32 37 32 31

33 34 31 31

31 31 32 33

34 31 31 32

36 32 33 30

34 32 31 31

32,7 32,7 31,3 31,4
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Table 6-4: End-to-end delays using ADPCM audio coding

TS, half duplex [ms] TS, full duplex [ms] RT, half duplex [ms] RT, full duplex [ms]

35 37 32 31

33 37 31 33

33 37 31 31

35 35 34 32

33 34 31 32

32 34 31 32

32 34 32 32

33 36 31 32

32 33 31 33

36 32 32 32

33,4 34,9 31,6 32,0

Table 6-5: End-to-end delays using GSM audio coding

TS, half duplex [ms] TS, full duplex [ms] RT, half duplex [ms] RT, full duplex [ms]

34 33 32 33

34 34 32 33

34 33 32 34

36 33 34 34

38 36 34 33

36 33 32 33

34 34 32 35

34 33 33 34

33 33 32 34

34 33 32 33

34,7 33,5 32,5 33,6
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Table 6-6: End-to-end delays using LPC audio coding

TS, half duplex [ms] TS, full duplex [ms] RT, half duplex [ms] RT, full duplex [ms]

34 37 32 34

34 36 32 34

34 36 34 35

36 35 34 36

36 41 33 36

35 37 33 36

37 35 33 36

35 35 32 35

35 35 34 35

34 37 33 35

35,0 36,4 33,0 35,2

Table 6-7: Average end-to-end delays in different audio codings

TS, half duplex [ms] TS, full duplex [ms] RT, half duplex [ms] RT, full duplex [ms]

PCM 32,7 32,7 31,3 31,4

ADPCM 33,4 34,9 31,6 32,0

GSM 34,7 33,5 32,5 33,6

LPC 35,0 36,4 33,0 35,2

6.2.3. Analysis of the measurements

Measurements were done over a non-loaded LAN and network caused delay was measured

with Ping and was shown to be constantly around 0,5 ms. The framing delay of 20 ms is

contributed in all results.

Hardware caused delays were measured by directing the signal from microphone input to

headphones output by Audio tool program. Thus, a 1 kHz square-wave input signal was

A/D converted and then D/A converted in the audio hardware. Input signal was connected

to the first channel  of an oscilloscope and output signal to the second channel of the

oscilloscope. HW delay was measured several times and was constantly 2,2 ms.

If we take for example full duplex measurement with real time priorities and PCM audio

coding and subtract 31,4 ms - 20 ms (framing delay) - 2*0,26 ms (processing delay) - 0,5

ms (network delay)- 2,2 (HW delay) we are left with 8,2 milliseconds. This delay is caused

by buffering. Buffering delay is introduced in 4 places in the end-to-end delay. In the

sending end it takes place both after sampling and after coding. In the receiving end
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buffering takes place both after receiving and before D/A coding. Small variations in

results with RT class processes are caused by varying buffering delays.

Operating system can increase the delay if Nevot is run as a time-sharing class process

because then it’s not guaranteed to be scheduled at predicted time intervals. The operating

system caused delay depends totally from the other processes running simultaneously in the

workstations. In these measurements it varied between 0 and 2,9 milliseconds. These

measurements were done in the summertime when the workstations were lightly loaded.

This explains the small contribution of the operating system caused delay. Components of

the end-to-end delay are illustrated in Table 6-8.

Table 6-8: Components of the end-to-end delay

Delay component Delay in ms

Framing delay 20,0

Processing delay 0,5 - 3,7

HW delay 2,2

Network delay 0,5

OS delay 0 – 2,9

Buffering delay 8,2 - 8,8

An interesting thing was noted in the end-to-end delay behaviour with Nevot. When a new

talkspurt is started, the delay is first around 30 ms as shown earlier, but within two seconds

it increases by 40 ms and after about 10 seconds it increases by another 20 ms. This was

found out to be caused by the Nevot that was receiving packets.

When a new talkspurt begins, Nevot starts buffering data in the playout buffer. It

periodically checks once in a second that there is certain amount of data in the playout

buffer. In the beginning of a talkspurt playout buffer is empty so when the program enters

this check, it copies the same packet two times to the playout buffer. When it comes to this

point again after one second, it again copies received audio packet twice to the playout

buffer. 10 seconds later this is repeated by the third time. This action implicitly increases

end-to-end delay by 60 ms. The reason is just to avoid buffer underflows in case of late

packets. This behaviour can be clearly seen in oscilloscope screen by measuring end-to-end

delay like explained earlier but using a 10 Hz sinus signal as input.
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The corresponding lines in the source code can be found from file rx.c:

/*

 * Every so often, check queue occupancy. If underflow error,

 * write audio block twice.

 */

if (++underflow > 50) {

   int q = ahw_write_queue(&underflow);

   if (underflow) {

       ring_action(r, r->next, nevot.rx.samples, (ring_action_t *)ahw_write,

       0, 0, nevot.rx.ad.bytes_per_frame);

       debug(DEBUG_AUDIO, "audio underflow (%d)", q);

   }

Nevot also provides a debugging option which enables us to record RTP-headers of the

received packets. Recorded debugging file is presented in Appendix 5. Corresponding

events when audio block is written twice to the playout buffer are seen at timestamps

901004499.820256, 901004500.819931 and 901004510.998093.

We removed this feature by simply replacing the line: “if (++underflow > 50) {“ in the

source code with: “if(0) {“ , and compiled Nevot again. The end-to-end delays with and

without this correction are illustrated in Figure 6-2. No reduction to sound quality caused

by this change was noticed in our informal subjective listening tests where the network was

lightly loaded. The evaluation of sound quality with higher network loads and different

playout delay settings would require more testing and is not within the scope of this thesis.
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Figure 6-2: End-to-end delays with and without correction

6.3. Comparison of playout algorithms

In this section we compare the performance of the playout algorithms that were presented

in Section 4.3. The performance metric we use to compare different playout algorithms is

the average playout delay vs. loss percentage. To evaluate algorithms 1-3, we generate

some traces which include the sender and received timestamps of each packet from a trace.

Using Matlab programs we can simulate the different algorithms. Playout delays for each

packet are calculated and we can determine if a packet has arrived before its playout time.

Thus we are able to calculate the loss percentage and average playout delay for each

algorithm with each trace.

First we compare each algorithm separately using different values for their main

parameters. For algorithms 1 and 2 we use different values of α and for algorithm 3 we

alternate the window parameter w. After this we compare algorithms 1 to 3 with each

others using parameters that gave the best performance with each trace. Finally, we will

present a new algorithm, referred to as algorithm 4, which is a combination of algorithms 1

and 3. We will then compare the performance of this algorithm with algorithms 1 and 3.
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6.3.1. Generation of the traces

In order to simulate playout algorithms, we have to generate some traces which illustrate

the delays experienced by voice packets. Setup of this measurement is shown in Figure 6-3.

A half-duplex voice connection is established between the two Sun Ultra Enterprise 1

workstations. A 1 kHz sinus signal is suppied by a function generator to the sendind

workstation’s microphone input. The signal generator is manually switched on/off to

generate talkspurts and silent periods. Both workstations are running Nevot 3.35 and

transmitted and received RTP-timestamps are recorded to files using the debugging option

of Nevot.

Figure 6-3: Setup for generating the traces

Network load was generated using Radcom Prism 200 protocol analyzer. Loads used with

different traces are shown in Table 6-9.

Table 6-9: Used network loads

Trace nr. Traffic description Frames/s Bits/frame Load/Mbps Length/packets

Trace 1 Small packets 3000-5000 160 3,936-6,560 25830

Trace 2 Small packets,

high load

2000-3500 320 5,184-9,072 25023

Trace 3 Large packets,

bursty load

100-860 1450 1,163-10,000 24048

Trace 4 Variable size packets,

bursty load

200-860 160-1450 0,2624-10,000 25337
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Packet delays of these traces are shown in Figures 6-4 to 6-7. Figures show only the

variable component of the delay, i.e., they are substracted with the minimum delay in the

whole trace. This is done because workstation clocks are not synchronized and their clock

offsets are several seconds.

Figure 6-4: Packet delays of trace 1
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Figure 6-5: Packet delays of trace 2

Figure 6-6: Packet delays of trace 3
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Figure 6-7: Packet delays of trace 4

6.3.2. Performance of algorithm 1

The playout delays for each packet in each trace are calculated using recorded RTP-

headers. The trade-off between average playout delay and loss ratio is controlled with

different values of β. The value pairs of average playout delay and loss ratio with each

value of β are connected by lines to obtain the presented figures.

Values of β are varied from 0,5 to 20 at steps of 0,5. In [28] α is suggested to be 0,998002

for algorithm 1. Here we compare algorithm 1 with α = 0,990, 0,995, 0998002 and 0,999.

Figures 6-8 to 6-11 illustrate the performance of algorithm 1 with different values of α.

The Matlab code for algorithm 1 is presented in Appendix 6.
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Figure 6-10: Algorithm 1 on trace 3
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Figure 6-11: Algorithm 1 on trace 4



76

On traces 1 and 2, α = 0,999 gave the best performance. On trace 3, α = 0,990 was best  in

the area of loss rate around 5 %, which would be the optimal operating point in this case,

and on trace 4, best performance was achieved with α = 0,998002. With all other traces

except with 3, performance degrades when α is reduced under α = 0,998002.

6.3.3. Performance of algorithm 2

Here β is also varied from 0,5 to 20 at the steps of 0,5. In [28], α is suggested to be 0,875.

Here we compare α with values 0,875, 0,900, 0,950 and 0,990. Figures 6-12 to 6-15 show

the results. Matlab code for algorithm 2 is presented in Appendix 7.
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Figure 6-15: Algorithm 2 on trace 4

Because the actual difference between algorithms 1 and 2 is that algorithm 2 provides an

additional operating mode for adapting to spikes, it is worth examining how well this spike

detection scheme works with our traces. Table 6-10 presents the amount of detected spikes

with each trace and each value of α.

Table 6-10: Numbers of detected spikes on algorithm 2

α = 0,875 α = 0,900 α = 0,950 α = 0,990

Trace 1 0 0 0 0

Trace 2 31 31 31 20

Trace 3 13 13 11 8

Trace 4 0 0 0 0

With traces 1 and 4, the algorithm doesn’t detect any spikes because the spike-detection

threshold is so high compared to the delay variance of these traces. In these cases algorithm

2 thus reduces to algorithm 1 with different values of α. With traces 2 and 3, the amount of

detected spikes varies between 8 and 31. When α is increased, it slows down the

convergence of the playout delay back to normal level after detection of a spike. However,
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the best performance on all traces is achieved with the largest value of α because most of

the time the algorithm operates in normal mode.

6.3.4. Performance of algorithm 3

In algorithm 3, the trade-off between average playout delay and loss rate is controlled by

the percentile point q. Values used for q were: 1, 0,9995, 0,9990, 0,998, 0,995, 0,990, 0,98,

0,97, 0,96, 0,94, 0,92, 0,90, 0,88, 0,86, 0,83 and 0,80. The length of the delay distribution

window, parameter w, is given values of : 500, 1000, 2000 and 5000. The resolution of the

delay distribution was set to 10 ms.

As discussed in Section 4.3.3., algorithm 3 needs some time to first collect the delay

statistics of the received packets. These results are obtained by calculating the playout

delays for packets from number w+1 onwards. Matlab code for algorithm 3 is presented in

Appendix 8. Results are shown in Figures 6-16 to 6-19.
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Figure 6-17: Algorithm 3 on trace 2
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Figure 6-19: Algorithm 3 on trace 4

Performance of algorithm 3 improves as w increases. Values of w > 5000 didn’t seem to

improve the performance any further in our experiments. With w < 1000, even small

decrementations of q under 1 tend to give a large increase in the loss ratio. This can be seen

for example in Fig. 6-17 where it looks like curve with w = 500 would give the best

performance on small loss rates, but in fact the curve just takes a short-cut because already

the value of q = 0,9995 gives over 1 per cent loss rate.

It is also useful to examine how the spike detection works in this algorithm. Tables 6-11 to

6-14 present the amount of detected spikes on different traces and parameter values.
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Table 6-11: Numbers of detected spikes on algorithm 3 and trace 1

W = 500 W = 1000 W = 2000 W = 5000

Q = 1,0000 0 0 0 0

Q = 0,9995 7 2 3 0

Q = 0,9990 7 2 3 1

Q = 0,998 7 6 5 2

Q = 0,995 12 8 11 9

Q = 0,990 15 17 19 18

Q = 0,98 22 22 23 19

Q = 0,97 33 29 30 26

Q = 0,96 39 41 33 29

Q = 0,94 46 46 44 32

Q = 0,92 47 47 47 38

Q = 0,90 49 50 49 38

Q = 0,88 50 51 52 44

Q = 0,86 53 52 55 45

Q = 0,83 55 54 56 47

Q = 0,80 57 56 56 51

Table 6-12: Numbers of detected spikes on algorithm 3 and trace 2

W = 500 W = 1000 W = 2000 W = 5000

Q = 1,0000 0 0 0 0

Q = 0,9995 2 0 0 0

Q = 0,9990 2 0 0 0

Q = 0,998 2 0 0 0

Q = 0,995 3 0 0 0

Q = 0,990 3 0 0 0

Q = 0,98 4 0 0 0

Q = 0,97 9 0 0 0

Q = 0,96 11 2 1 0

Q = 0,94 27 16 8 0

Q = 0,92 49 33 21 16

Q = 0,90 68 54 36 26

Q = 0,88 103 98 82 45

Q = 0,86 136 124 116 76

Q = 0,83 168 157 155 119

Q = 0,80 199 177 171 148
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Table 6-13: Numbers of detected spikes on algorithm 3 and trace 3

W = 500 W = 1000 W = 2000 W = 5000

Q = 1,0000 0 0 0 0

Q = 0,9995 7 0 0 0

Q = 0,9990 7 0 0 0

Q = 0,998 7 0 0 0

Q = 0,995 12 2 0 0

Q = 0,990 14 2 0 0

Q = 0,98 19 6 0 0

Q = 0,97 33 11 0 0

Q = 0,96 47 21 0 0

Q = 0,94 77 66 33 0

Q = 0,92 101 99 98 51

Q = 0,90 107 106 97 82

Q = 0,88 112 112 100 88

Q = 0,86 114 112 105 91

Q = 0,83 126 126 111 92

Q = 0,80 167 145 117 98

Table 6-14: Numbers of detected spikes on algorithm 3 and trace 4

W = 500 W = 1000 W = 2000 W = 5000

Q = 1,0000 0 0 0 0

Q = 0,9995 2 2 1 0

Q = 0,9990 2 2 1 0

Q = 0,998 2 5 4 4

Q = 0,995 8 9 8 7

Q = 0,990 9 10 10 8

Q = 0,98 10 11 10 8

Q = 0,97 11 11 11 11

Q = 0,96 11 13 14 11

Q = 0,94 13 16 17 13

Q = 0,92 17 18 17 13

Q = 0,90 21 19 20 15

Q = 0,88 22 23 23 17

Q = 0,86 23 25 25 19

Q = 0,83 109 26 27 21

Q = 0,80 463 216 30 22
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It can be noted that the number of detected spikes increases quite fast as q decreases. Also

the number of detected spikes decreases as w increases. This is obvious because with a

larger w and q, the variance of the playout delay stays smaller.

If we compare the spike detection techniques used in algorithms 2 and 3, it can be noted

that in algorithm 2 the threshold is almost fixed and relatively high because of the used

absolute time component. In algorithm 3 the beginning of a spike is detected by a large

enough change in delay compared to previous playout delay and therefore it adapts the

threshold according to the current delay distribution.

Also in algorithm 2 it takes some time to converge back to the earlier delay level after a

spike, whereas in algorithm 3 we return directly to the earlier situation. Thus algorithm 2

introduces unnecessary additional delay in this concept.

6.3.5. Comparison of algorithms 1-3

Here we compare on each trace algoritms 1-3 with parameters that gave the best

performance in previous sections. For algorithm 1, α = 0,999 is used for traces 1 and 2,

α = 0,990 is used for trace 3, and α = 0,998002 is used for trace 4. For algorithm 2,

α = 0,990 in all traces and for algorithm 3, w = 5000 in all traces. Results are shown in

Figures 6-20 to 6-23.
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Figure 6-20: Algorithms 1-3 on trace 1
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Figure 6-21: Algorithms 1-3 on trace 2
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Figure 6-22: Algorithms 1-3 on trace 3
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Figure 6-23: Algorithms 1-3 on trace 4
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It can be seen that algorithm 3 gives the best performance over the other two algorithms on

all traces except on trace 3, where algorithm 1 gives the best performance at the loss rates

of  4-8 %. The differences between the performances of different algorithms seemed to

increase with smaller loss rates and greater delay variance. With traces 2 and 3, algorithms

1 and 3 gave almost similar performance at loss ratios over 4 %, but when loss ratios

decrease, algorithm 3 performs a lot better.

Algorithm 2 performes quite poorly. This is because the spike detection mode doesn’t work

like desired with our traces. The spikes that we could generate in our experiments were not

as long measured in packets as this algorithm is planned to be used with. The spikes don’t

exceed very often to several talkspurts and thus the algorithm only seems to increase the

delay significantly but doesn’t reduce the loss ratio so much. Also in normal mode

algorithm 2 gives worse performance than algorithm 1 because of the smaller value of α.

Traces 2 and 3 tend to give very high playout delays because of the high network load. If

we had an IP voice connection over this kind of a network, the parameters of the playout

algorithms should be set so that the playout delay would be reduced at the expense of the

packet loss. Packet losses up to 5 % can be tolerated. This would give playout delays

around 400 ms for traces 2 and 3 . Conversation would still be possible but not very

convenient because of the high delays and reduced sound quality.

6.3.6. Algorithm 4

With algorithm 3, the problem is that it first needs to collect some delay statistics. In a real-

time implementation it is not possible to use algorithm 3 from the beginning of a call.

Therefore we can combine together algorithms 1 and 3 and the resulting algorithm is called

here algorithm 4. The idea is simply to calculate the playout delays with algorithm 1 until

we have received 5000 voice packets and then switch to algorithm 3. The switch can’t be

done earlier because then algorithm 3 would probably give worse results than algorithm 1.

The extension to algorithm 1 is that we use the two operating modes from algorithm 3

since the beginning of the call. The Matlab code for algorithm 4 is presented in Appendix

9. In Figures 6-24 to 6-27 we present the performance of algorithm 4 compared with

algorithms 1 and 3.
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Figure 6-24: Algorithms 1, 3 and 4 on trace 1
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Figure 6-25: Algorithms 1, 3 and 4 on trace 2
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Figure 6-26: Algorithms 1, 3 and 4 on trace 3
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Figure 6-27: Algorithms 1, 3 and 4 on trace 4
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Logically, algorithm 4 shows performance between algorithms 1 and 3 except with trace 1

where the results are about the same for algorithms 1 and 4. In the higher scale of packet

loss, all three algorithms perform equally well. When packet loss reduces, algorithm 4’s

performance improves compared to algorithm 1.

If we are using 20 ms voice packets then 5000 packets would mean 100 seconds of voice.

When we consider that in average 40 % of the time the sender is active, this means that the

switch from algorithm 1 to algorithm 3 happens approximately 250 seconds after the

beginning of a call. The actual benefit of algorithm 4 is obtained during long calls, with

duration over 4 minutes. But compared to algorithms 1 and 2, the use of a better spike

detection mode from algorithm 3, improves the presentation from the beginning of a call.

6.3.7. Summary

We compared the performance of three different playout algorithms that were found in

literature. The used performance metric was average playout delay vs. packet playout loss.

These algorithms were simulated on different network caused delay distributions. Delays

were generated by loading Ethernet with Radcom protocol analyzer.

Algorithm 1 is based on stochastic gradient algorithm and is basically a linear filter.

Algorithm 2 is actually algorithm 1 extended with a second operational mode to detect

rapid changes in network delay characteristics. Algorithm 3 is based on calculating playout

delays based on previous delay history.

In our simulations, algorithm 2 gave the worst performance. In [28] algorithm 2 was shown

to outperform algorithm 1 with most of the used traces. The reason is that in [28] real

Internet traces were used and in our experiments the network delays were simulated in

Ethernet. In our measurements it was not possible to create “real” spikes that would have

spread into several talkspurts and thus take advantage of algorithm 2’s properties.

In our simulations, algorithm 3 gave the best results compared with algorithms 1 and 2.

Similar results were reported in [29]. The problem with algorithm 3 is that it is not real-

time implementable as such. Therefore we presented a new algorithm which combines

together algorithms 1 and 3. This algorithm is shown to perform better that the other two

real-time algorithms. Most advantage of this algorithm is got when the duration of a call

exceeds 250 seconds. It’s not uncommon for a phone call to last for example 30 minutes

and in such case we will get significant benefit by using this algorithm.
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With playout algorithms, it is essential that the parameters that control the playot delay/

late loss - ratio are configured appropriately. In Nevot 3.35 playout algorithm 1 is used.

User can define β as an integer between 1 and 10. The default value is 4. So it is up to the

user to reconfigure β to match with the changing network delay characteristics. As an

improvement to the existing playout algorithms, an algorithm could keep statistics of the

average playout delay and late loss rate and adapt its parameters to give the best possible

performance with current network delay characteristics.
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7. CONCLUSIONS AND FUTURE WORK

In this thesis we concentrated on the delays in an IP voice terminal. We measured the

processing delays in a Voice over IP application software using different audio codecs.

Even with the heaviest codec, the contribution of processing delay to the end-to-end delay

stayed under 4 ms.

We also studied the end-to-end delay between two Sun Ultra workstations in a situation

where the network between the workstations was unloaded and practically all delay was

generated in the workstations.

The components of the end-to-end delay were measured and a significant part of the delay

was found out to be generated in the receiving workstation where the application software

starts collecting voice packets to the playout buffer in order to avoid buffer underflows.

Other components of the end-to-end delay were framing delay, processing delay, other

buffering delays, HW delay in the soundcard and the delay caused by operating system if

VoIP software was run as a time-sharing class process.

In our measurements, the difference in the end-to-end delays between real-time and time-

sharing class processes was relatively small, between 0 and 3 ms, but these measurements

were performed in the summertime when the workstations were lightly loaded.

Our experiments show that the Sun Ultra platform provides an environment where it is

possible to provide bounds on the delays presented in the workstations. This can be

accomplished with real-time scheduled processes that are provided by the operating

system. If the application software is implemented so that it presents no additional delays

and the used network connection is lightly loaded, it is possible to achieve end-to-end

delays in the order of 30-40 milliseconds using 20 ms packet size.

We also made comparison of different playout algorithms under different network delay

characteristics. The best performance in our simulations was obtained by an algorithm that

was based on previous delay history. This algorithm was not real-time implementable as

such and therefore we presented a new algorithm that was a combination of this and an

existing real-time algorithm. Our algorithm was shown to outperform the other existing

real-time algorithms that were compared in our studies. This algorithm gives best

performance with calls that durate over 250 seconds. During the first 250 seconds, delay
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statistics are collected and from there on, playout delays are calculated using delay

distribution of previous 5000 packets.

To further improve the performance of our playout algorithm, it could keep track of the

average playout delay and late loss rate and adapt its parameters according to the network

delay characteristics. Future work also includes studying delays in PC evironment with

Linux operating system.
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APPENDIX 1:

Profile file of Nevot CPU consumption with PCM audio coding

%Time Seconds Cumsecs  #Calls msec/call Name

 49.8    1.58    1.58   30541      0.0517  audio_stats
   9.5    0.30    1.88   15252      0.0197  mix2_pcmu
   5.7    0.18    2.06                        _mcount
   3.8    0.12    2.18                        Tk_DoOneEvent
   2.8    0.09    2.27   30485      0.0030  ring_mix
   2.5    0.08    2.35   15355      0.0052  rx
   2.5    0.08    2.43 131328      0.0006  pcmu_to_l14
   1.9    0.06    2.49   15292      0.0039  tx_local_audio
   1.3    0.04    2.53   15258      0.0026  tx_packet_session
   1.3    0.04    2.57   15190      0.0026  tx_packet
   1.3    0.04    2.61   30485      0.0013  bytes2samples
   0.9    0.03    2.64                        Tcl_ConvertElement
   0.9    0.03    2.67   15190      0.0020  agc
   0.9    0.03    2.70                        TclParseWords
   0.9    0.03    2.73   30583      0.0010  ring_action
   0.9    0.03    2.76   15190      0.0020  rtp_write_data
   0.6    0.02    2.78                          ValueToPixel
   0.6    0.02    2.80   15258      0.0013  tx_member
   0.6    0.02    2.82   28039      0.0007  tx
   0.6    0.02    2.84   30482      0.0007  peakmeter
   0.6    0.02    2.86   15292      0.0013  play_local
   0.6    0.02    2.88                        gcc2_compiled., strtod
   0.6    0.02    2.90   15295      0.0013  rx_stats
   0.6    0.02    2.92   15417      0.0013  member_find
   0.6    0.02    2.94     6164      0.003    event
   0.3    0.01    2.95                        $2
   0.3    0.01    2.96                        Tk_BindEvent
   0.3    0.01    2.97                        Tcl_ScanElement
   0.3    0.01    2.98                        DisplayVerticalMeter
   0.3    0.01    2.99   15355      0.0007  UDP_read
   0.3    0.01    3.00   43394      0.0002  file_handler
   0.3    0.01    3.01                        DisplayButton
   0.3    0.01    3.02   30483      0.0003  ring_cpy
   0.3    0.01    3.03                        Tk_Preserve, gcc2_compiled.
   0.3    0.01    3.04   58961      0.0002  debug
   0.3    0.01    3.05        1    10.   audio_stats_init
   0.3    0.01    3.06   15190      0.0007  tx_session_attach
   0.3    0.01    3.07   15258      0.0007  UDP_write
   0.3    0.01    3.08   31194      0.0003  htonl
   0.3    0.01    3.09                        Tcl_GetDouble
   0.3    0.01    3.10           1    10.   pcmu_linear_init
   0.3    0.01    3.11   30552      0.0003  m_get
   0.3    0.01    3.12   15354      0.0007  audio_silence
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   0.3    0.01    3.13                        TclParseBraces
   0.3    0.01    3.14   15295      0.0007  rx_debug
   0.3    0.01    3.15           1    10.   mix_init
   0.3    0.01    3.16   15266      0.0007  tsap_ismulticast
   0.3    0.01    3.17                        SetMeterValue
   0.0    0.00    3.17         17      0.0    cmd_member
   0.0    0.00    3.17         60      0.0    rtp_read_sdes
   0.0    0.00    3.17         60      0.0    rtp_read_traffic
   0.0    0.00    3.17         60      0.0    rtp_read_control
   0.0    0.00    3.17   15295      0.0000  rtp_read_data
   0.0    0.00    3.17         67      0.0    rtp_write_traffic
   0.0    0.00    3.17         68      0.0    rtp_write_control
   0.0    0.00    3.17           3      0.   rtp_change_audio
   0.0    0.00    3.17           3      0.   rtp_init
   0.0    0.00    3.17           2      0.   Audio_MemberListen
   0.0    0.00    3.17         67      0.0    rtp_write_sdes
   0.0    0.00    3.17   30485      0.0000  htons
   0.0    0.00    3.17       603      0.00      rtcp_text
   0.0    0.00    3.17         66      0.0       rtp_packets_exp
   0.0    0.00    3.17   15415      0.0000  ntohl
   0.0    0.00    3.17         67      0.0       rx_periodic
   0.0    0.00    3.17           1      0.        rx_init
   0.0    0.00    3.17           2      0.        cmd_simple
   0.0    0.00    3.17   15295      0.0000  ntohs
   0.0    0.00    3.17           1      0.        Audio_SessionFind
   0.0    0.00    3.17           2      0.        talkspurt
   0.0    0.00    3.17           1      0.        Audio_SessionDelete
   0.0    0.00    3.17           1      0.          Audio_SessionAlloc
   0.0    0.00    3.17           1      0.        Audio_SessionOpen
   0.0    0.00    3.17           8      0.        Audio_SessionSetSDES
   0.0    0.00    3.17           1      0.        Audio_SessionSetTTL
   0.0    0.00    3.17           2      0.        Audio_MemberDelete
   0.0    0.00    3.17           1      0.        cmd_session_audio
   0.0    0.00    3.17           2      0.        Audio_SessionTalk
   0.0    0.00    3.17           2      0.        Audio_MemberClose
   0.0    0.00    3.17           2      0.        member_add
   0.0    0.00    3.17         61      0.0       member_announce
   0.0    0.00    3.17           1      0.        session_add_host
   0.0    0.00    3.17           1      0.        Audio_exit
   0.0    0.00    3.17           8      0.        rx_trace
   0.0    0.00    3.17           1      0.        rx_config
   0.0    0.00    3.17           4      0.        tx_trace
   0.0    0.00    3.17   15351      0.0000  play_silence
   0.0    0.00    3.17         26      0.0       cmd_session
   0.0    0.00    3.17         67      0.0       tx_periodic_audio
   0.0    0.00    3.17   15261      0.0000  session_ismulticast
   0.0    0.00    3.17           1      0.        tx_start
   0.0    0.00    3.17         65      0.0       tx_samples
   0.0    0.00    3.17           1      0.        tx_init
   0.0    0.00    3.17           1      0.        tx_packet_init
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   0.0    0.00    3.17           1      0.        tx_packet_close
   0.0    0.00    3.17           1      0.        session_open
   0.0    0.00    3.17           4      0.        cmd_general
   0.0    0.00    3.17   30485      0.0000  talking_set
   0.0    0.00    3.17           1      0.        Audio_SessionSetKey
   0.0    0.00    3.17           1      0.        vat_init
   0.0    0.00    3.17           3      0.          audio_change
   0.0    0.00    3.17           1      0.          audio_out
   0.0    0.00    3.17   30488      0.0000  audio_open
   0.0    0.00    3.17           1      0.          Audio_SessionSetDuplex
   0.0    0.00    3.17           1      0.          audio_close_idle
   0.0    0.00    3.17           2      0.          Audio_SessionSetAudio
   0.0    0.00    3.17           1      0.          Audio_SessionListen
   0.0    0.00    3.17           6      0.          audio_chunk
   0.0    0.00    3.17           1      0.          Tcl_AppInit
   0.0    0.00    3.17           1      0.          ring_create
   0.0    0.00    3.17     6137      0.000    vu_show
   0.0    0.00    3.17           2      0.          talking_delete
   0.0    0.00    3.17   15292      0.0000  talking_check
   0.0    0.00    3.17           2      0.          ring_clear
   0.0    0.00    3.17           1      0.          main
   0.0    0.00    3.17       430      0.00      member_sdes
   0.0    0.00    3.17           2      0.          talking_clear
   0.0    0.00    3.17         66      0.0        timer_handler
   0.0    0.00    3.17         68      0.0        notify_set_periodic_func
   0.0    0.00    3.17           1      0.          tx_config
   0.0    0.00    3.17           1      0.          cmd_init
   0.0    0.00    3.17         67      0.0        tx_periodic
   0.0    0.00    3.17           6      0.          agc_trace
   0.0    0.00    3.17           1      0.          agc_init
   0.0    0.00    3.17       130      0.00      audio_cmp
   0.0    0.00    3.17       165      0.00      audio_descr
   0.0    0.00    3.17           2      0.          audio_seconds_to_bytes
   0.0    0.00    3.17   15190      0.0000  cache_read
   0.0    0.00    3.17           2      0.          debug_file
   0.0    0.00    3.17           2      0.          debug_mask
   0.0    0.00    3.17           1      0.          debug_close
   0.0    0.00    3.17           4      0.          audio_close
   0.0    0.00    3.17           1      0.          dvi_adpcm_init_state
   0.0    0.00    3.17           1      0.          dvi_adpcm_init
   0.0    0.00    3.17           3      0.          g711_init
   0.0    0.00    3.17           1      0.          G721_init
   0.0    0.00    3.17           1      0.          G723_init
   0.0    0.00    3.17           2      0.          gettimeofday_double
   0.0    0.00    3.17         65      0.0       gettimeofday_ntp
   0.0    0.00    3.17           1      0.          GSM_init
   0.0    0.00    3.17           2      0.          List_to_index
   0.0    0.00    3.17     6137      0.000    audio_vu
   0.0    0.00    3.17   30652      0.0000  ring_left
   0.0    0.00    3.17           2      0.          list_key2value
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   0.0    0.00    3.17           1      0.          lpc_init
   0.0    0.00    3.17           6      0.          notify_set_input_func
   0.0    0.00    3.17   30550      0.0000  m_free
   0.0    0.00    3.17   15259      0.0000  m_freem
   0.0    0.00    3.17           1      0.          m_create
   0.0    0.00    3.17           1      0.          onlyone
   0.0    0.00    3.17       127      0.00      rtcp_period
   0.0    0.00    3.17   73984      0.0000  l14_to_pcmu
   0.0    0.00    3.17   15354      0.0000  l16_to_pcmu
   0.0    0.00    3.17           6      0.          peakmeter_trace
   0.0    0.00    3.17           2      0.          peakmeter_init
   0.0    0.00    3.17           4      0.          md_32
   0.0    0.00    3.17           4      0.          random32
   0.0    0.00    3.17         11      0.0        sd_trace
   0.0    0.00    3.17           1      0.          sd_init
   0.0    0.00    3.17   15190      0.0000  sd
   0.0    0.00    3.17           1      0.          source_file
   0.0    0.00    3.17           1      0.          strcpy_pad
   0.0    0.00    3.17         14      0.0        strsaven
   0.0    0.00    3.17           2      0.          tcl
   0.0    0.00    3.17       133      0.00      timeval_ntp32
   0.0    0.00    3.17         10      0.0        tsap_alloc
   0.0    0.00    3.17           9      0.          tsap_free
   0.0    0.00    3.17           2      0.          tsap_equ_a
   0.0    0.00    3.17       432      0.00      tsap_ntoa
   0.0    0.00    3.17           1      0.          tsap_gethostaddress
   0.0    0.00    3.17           4      0.          tsap_getport
   0.0    0.00    3.17           7      0.          tsap_setport
   0.0    0.00    3.17           1      0.          tsap_gethostbyname
   0.0    0.00    3.17           2      0.          tsap_sprintf
   0.0    0.00    3.17           2      0.          tsap_ip4
   0.0    0.00    3.17         11      0.0        htons
   0.0    0.00    3.17           4      0.          ntohs
   0.0    0.00    3.17           2      0.          UDP_connect
   0.0    0.00    3.17           1      0.          Audio_init
   0.0    0.00    3.17           2      0.          UDP_close
   0.0    0.00    3.17           2      0.          itoa
   0.0    0.00    3.17         11      0.0        ahw_open_control
   0.0    0.00    3.17           2      0.          ahw_getdev
   0.0    0.00    3.17           1      0.          l16_init
   0.0    0.00    3.17           1      0.          ahw_close
   0.0    0.00    3.17   15181      0.0000  ahw_set
   0.0    0.00    3.17           1      0.          ahw_fmt
   0.0    0.00    3.17       299      0.00      ahw_write_queue
   0.0    0.00    3.17   15352      0.0000  ahw_write
   0.0    0.00    3.17   28039      0.0000  ahw_read
   0.0    0.00    3.17         30      0.0        exp10
   0.0    0.00    3.17           4      0.          gethostid
   0.0    0.00    3.17           2      0.          signal
   0.0    0.00    3.17           4      0.          MD5Init
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   0.0    0.00    3.17         12      0.0        MD5Update
   0.0    0.00    3.17           4      0.          MD5Final
   0.0    0.00    3.17         84      0.0        MD5Transform
   0.0    0.00    3.17           8      0.          Encode
   0.0    0.00    3.17         84      0.0        Decode
   0.0    0.00    3.17   15361      0.0000  tsap_cpy
   0.0    0.00    3.17           1      0.          ahw_open
   0.0    0.00    3.17           2      0.          cmd_terminate
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APPENDIX 2:

Profile file of Nevot CPU consumption with ADPCM audio coding

%Time Seconds Cumsecs #Calls msec/call Name

 26.4    1.75    1.75   30654      0.0571  audio_stats
 25.9    1.72    3.47   15221      0.1130  dvi_adpcm_encode
 25.6    1.70    5.17   15276      0.1113  dvi_adpcm_decode
   3.9    0.26    5.43   15335      0.0170  mix2_pcmu
   1.7    0.11    5.54                        Tk_DoOneEvent
   1.2    0.08    5.62                        $2
   1.1    0.07    5.69                        _mcount
   1.1    0.07    5.76   15609      0.0045  member_find
   1.1    0.07    5.83   15543      0.0045  rx
   0.9    0.06    5.89   28383      0.0021  tx
   0.8    0.05    5.94   30700      0.0016  ring_mix
   0.8    0.05    5.99   15476      0.0032  play_local
   0.6    0.04    6.03                        TclParseWords
   0.6    0.04    6.07   43926      0.0009  file_handler
   0.6    0.04    6.11   15221      0.0026  tx_packet
   0.6    0.04    6.15                        StringFind
   0.5    0.03    6.18                        Tcl_ScanElement
   0.5    0.03    6.21   30697      0.0010  peakmeter
   0.5    0.03    6.24 131328      0.0002  pcmu_to_l14
   0.5    0.03    6.27   45983      0.0007  m_get
   0.5    0.03    6.30                        ValueToPixel
   0.5    0.03    6.33   30700      0.0010  bytes2samples
   0.3    0.02    6.35   73984      0.0003  l14_to_pcmu
   0.3    0.02    6.37   15284      0.0013  tx_packet_session
   0.3    0.02    6.39   15479      0.0013  rx_stats
   0.2    0.01    6.40                        Tcl_ConvertElement
   0.2    0.01    6.41                        DisplayVerticalMeter
   0.2    0.01    6.42     6451      0.002    event
   0.2    0.01    6.43                        Tcl_DStringInit
   0.2    0.01    6.44                        Tcl_Eval
   0.2    0.01    6.45   30700      0.0003  talking_set
   0.2    0.01    6.46   30649      0.0003  ring_cpy
   0.2    0.01    6.47   30748      0.0003  ring_action
   0.2    0.01    6.48   15287      0.0007  session_ismulticast
   0.2    0.01    6.49                        Tcl_DStringAppendElement
   0.2    0.01    6.50                        gcc2_compiled., strtod
   0.2    0.01    6.51   28383      0.0004  ahw_read
   0.2    0.01    6.52   15221      0.0007  agc
   0.2    0.01    6.53   15284      0.0007  tx_member
   0.2    0.01    6.54                        ExprGetValue
   0.2    0.01    6.55   15479      0.0006  rtp_read_data
   0.2    0.01    6.56   30497      0.0003  htons
   0.2    0.01    6.57   15221      0.0007  sd
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   0.2    0.01    6.58   15221      0.0007  rtp_write_data
   0.2    0.01    6.59   15476      0.0006  talking_check
   0.2    0.01    6.60   31367      0.0003  htonl
   0.2    0.01    6.61                                Tdp_CommandTrace
   0.2    0.01    6.62                        NewVar
   0.2    0.01    6.63   15434      0.0006  l16_to_pcmu
   0.0    0.00    6.63         63      0.0       rtp_write_control
   0.0    0.00    6.63         64      0.0        rtp_read_sdes
   0.0    0.00    6.63         64      0.0        rtp_read_traffic
   0.0    0.00    6.63         64      0.0        rtp_read_control
   0.0    0.00    6.63       558      0.00      rtcp_text
   0.0    0.00    6.63         62      0.0        rtp_write_traffic
   0.0    0.00    6.63   30700      0.0000  htons
   0.0    0.00    6.63         62      0.0        rtp_write_sdes
   0.0    0.00    6.63           3      0.          rtp_change_audio
   0.0    0.00    6.63           2      0.          cmd_terminate
   0.0    0.00    6.63           3      0.          rtp_init
   0.0    0.00    6.63   15607      0.0000  ntohl
   0.0    0.00    6.63   15433      0.0000  play_silence
   0.0    0.00    6.63     6424      0.000    vu_show
   0.0    0.00    6.63         62      0.0        rx_periodic
   0.0    0.00    6.63   15479      0.0000  ntohs
   0.0    0.00    6.63           2      0.          Audio_MemberClose
   0.0    0.00    6.63         61      0.0        rtp_packets_exp
   0.0    0.00    6.63           1      0.          Audio_SessionFind
   0.0    0.00    6.63           2      0.          Audio_MemberListen
   0.0    0.00    6.63           3      0.          talkspurt
   0.0    0.00    6.63           1      0.          Audio_SessionSetTTL
   0.0    0.00    6.63   15479      0.0000  rx_debug
   0.0    0.00    6.63           2      0.          Audio_SessionSetAudio
   0.0    0.00    6.63           2      0.          Audio_SessionTalk
   0.0    0.00    6.63           1      0.          Audio_SessionListen
   0.0    0.00    6.63           2      0.          Audio_MemberDelete
   0.0    0.00    6.63           1      0.          Tcl_AppInit
   0.0    0.00    6.63           2      0.          talking_delete
   0.0    0.00    6.63           1      0.          rx_init
   0.0    0.00    6.63           8      0.          rx_trace
   0.0    0.00    6.63           1      0.          rx_config
   0.0    0.00    6.63           4      0.          tx_trace
   0.0    0.00    6.63           1      0.          tx_config
   0.0    0.00    6.63         62      0.0        tx_periodic_audio
   0.0    0.00    6.63   15476      0.0000  tx_local_audio
   0.0    0.00    6.63           1      0.          session_open
   0.0    0.00    6.63           2      0.          tx_start
   0.0    0.00    6.63         59      0.0        tx_samples
   0.0    0.00    6.63           1      0.          main
   0.0    0.00    6.63           1      0.          session_add_host
   0.0    0.00    6.63           1      0.          tx_packet_init
   0.0    0.00    6.63           1      0.          tx_packet_close
   0.0    0.00    6.63   15221      0.0000  tx_session_attach
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   0.0    0.00    6.63           1      0.          Audio_SessionDelete
   0.0    0.00    6.63           2      0.          cmd_simple
   0.0    0.00    6.63           1      0.          Audio_SessionAlloc
   0.0    0.00    6.63           1      0.          Audio_SessionOpen
   0.0    0.00    6.63           8      0.          Audio_SessionSetSDES
   0.0    0.00    6.63           1      0.          Audio_SessionSetKey
   0.0    0.00    6.63           3      0.          audio_change
   0.0    0.00    6.63           1      0.          audio_out
   0.0    0.00    6.63           1      0.          Audio_SessionSetDuplex
   0.0    0.00    6.63           4      0.          audio_close
   0.0    0.00    6.63       458      0.00      member_sdes
   0.0    0.00    6.63     6424      0.000    audio_vu
   0.0    0.00    6.63           8      0.          audio_chunk
   0.0    0.00    6.63         17      0.0        cmd_member
   0.0    0.00    6.63           1      0.          ring_create
   0.0    0.00    6.63           2      0.          member_add
   0.0    0.00    6.63         65      0.0        member_announce
   0.0    0.00    6.63           3      0.          talking_clear
   0.0    0.00    6.63           2      0.          ring_clear
   0.0    0.00    6.63           8      0.          notify_set_input_func
   0.0    0.00    6.63         61      0.0        timer_handler
   0.0    0.00    6.63           1      0.          Audio_exit
   0.0    0.00    6.63         62      0.0        tx_periodic
   0.0    0.00    6.63           1      0.          cmd_session_audio
   0.0    0.00    6.63           1      0.          tx_init
   0.0    0.00    6.63           6      0.          agc_trace
   0.0    0.00    6.63           1      0.          agc_init
   0.0    0.00    6.63       140      0.00      audio_cmp
   0.0    0.00    6.63       169      0.00      audio_descr
   0.0    0.00    6.63           2      0.          audio_seconds_to_bytes
   0.0    0.00    6.63   15436      0.0000  audio_silence
   0.0    0.00    6.63           1      0.          audio_stats_init
   0.0    0.00    6.63   15221      0.0000  cache_read
   0.0    0.00    6.63           2      0.          debug_file
   0.0    0.00    6.63           2      0.          debug_mask
   0.0    0.00    6.63   59555      0.0000  debug
   0.0    0.00    6.63           2      0.          dvi_adpcm_init_state
   0.0    0.00    6.63           2      0.          dvi_adpcm_init
   0.0    0.00    6.63           1      0.          vat_init
   0.0    0.00    6.63           2      0.          g711_init
   0.0    0.00    6.63           1      0.          cmd_init
   0.0    0.00    6.63           1      0.          G721_init
   0.0    0.00    6.63           1      0.          Audio_init
   0.0    0.00    6.63   30756      0.0000  audio_open
   0.0    0.00    6.63           3      0.          gettimeofday_double
   0.0    0.00    6.63         59      0.0        gettimeofday_ntp
   0.0    0.00    6.63           1      0.          GSM_init
   0.0    0.00    6.63           1      0.          audio_close_idle
   0.0    0.00    6.63           1      0.          l16_init
   0.0    0.00    6.63           2      0.          list_to_index
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   0.0    0.00    6.63   31015      0.0000  ring_left
   0.0    0.00    6.63           2      0.          list_key2value
   0.0    0.00    6.63           1      0.        lpc_init
   0.0    0.00    6.63         26      0.0       cmd_session
   0.0    0.00    6.63         63      0.0       notify_set_periodic_func
   0.0    0.00    6.63   15285      0.0000  m_freem
   0.0    0.00    6.63           1      0.        m_create
   0.0    0.00    6.63           1      0.        mix_init
   0.0    0.00    6.63           1      0.        onlyone
   0.0    0.00    6.63       126      0.00      rtcp_period
   0.0    0.00    6.63           1      0.        pcmu_linear_init
   0.0    0.00    6.63           6      0.        peakmeter_trace
   0.0    0.00    6.63           2      0.        peakmeter_init
   0.0    0.00    6.63           4      0.        cmd_general
   0.0    0.00    6.63           4      0.        md_32
   0.0    0.00    6.63           4      0.        random32
   0.0    0.00    6.63         11      0.0       sd_trace
   0.0    0.00    6.63           1      0.        sd_init
   0.0    0.00    6.63           1      0.        source_file
   0.0    0.00    6.63           1      0.        Strcpy_pad
   0.0    0.00    6.63         14      0.0       strsaven
   0.0    0.00    6.63           2      0.        tcl
   0.0    0.00    6.63       123      0.00      timeval_ntp32
   0.0    0.00    6.63         10      0.0       tsap_alloc
   0.0    0.00    6.63           9      0.        tsap_free
   0.0    0.00    6.63   15549      0.0000  tsap_cpy
   0.0    0.00    6.63           2      0.        tsap_equ_a
   0.0    0.00    6.63       460      0.00      tsap_ntoa
   0.0    0.00    6.63   15292      0.0000  tsap_ismulticast
   0.0    0.00    6.63           1      0.        tsap_gethostaddress
   0.0    0.00    6.63           4      0.        tsap_getport
   0.0    0.00    6.63           7      0.        tsap_setport
   0.0    0.00    6.63           1      0.        tsap_gethostbyname
   0.0    0.00    6.63           2      0.        tsap_sprintf
   0.0    0.00    6.63           2      0.        tsap_ip4
   0.0    0.00    6.63         11      0.0       htons
   0.0    0.00    6.63           4      0.        ntohs
   0.0    0.00    6.63           2      0.        UDP_connect
   0.0    0.00    6.63   15543      0.0000  UDP_read
   0.0    0.00    6.63   15284      0.0000  UDP_write
   0.0    0.00    6.63           2      0.          UDP_close
   0.0    0.00    6.63           2      0.        itoa
   0.0    0.00    6.63         13      0.0       ahw_open_control
   0.0    0.00    6.63           5      0.        ahw_getdev
   0.0    0.00    6.63           2      0.        ahw_open
   0.0    0.00    6.63           2      0.        ahw_close
   0.0    0.00    6.63   15214      0.0000  ahw_set
   0.0    0.00    6.63           3      0.        ahw_fmt
   0.0    0.00    6.63       301      0.00      ahw_write_queue
   0.0    0.00    6.63   15435      0.0000  ahw_write
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   0.0    0.00    6.63           1      0.        debug_close
   0.0    0.00    6.63         30      0.0        exp10
   0.0    0.00    6.63           4      0.          gethostid
   0.0    0.00    6.63           2      0.          signal
   0.0    0.00    6.63           4      0.          MD5Init
   0.0    0.00    6.63         12      0.0        MD5Update
   0.0    0.00    6.63           4      0.          MD5Final
   0.0    0.00    6.63         84      0.0        MD5Transform
   0.0    0.00    6.63           8      0.          Encode
   0.0    0.00    6.63         84      0.0        Decode
   0.0    0.00    6.63   15276      0.0000  ntohs
   0.0    0.00    6.63           1      0.          G723_init
   0.0 0.00    6.63   45981      0.0000  m_free
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APPENDIX 3:

Profile file of Nevot CPU consumption with GSM audio coding

%Time Seconds Cumsecs #Calls msec/call Name

 19.6    2.90    2.90                         Fast_Calculation_of_the_LTP_parameters
 13.7    2.03    4.93                         Short_term_analysis_filtering
 12.5    1.85    6.78                         Short_term_synthesis_filtering
 11.3    1.67    8.45    30435      0.0549  audio_stats
   4.7    0.69    9.14                         Weighting_filter
   4.5    0.67    9.81                         Fast_Autocorrelation
   4.2    0.62   10.43 2440739    0.0003  l16_to_pcmu
   3.0    0.44   10.87                         Gsm_Preprocess
   2.0    0.30   11.17                         Long_term_analysis_filtering
   2.0    0.29   11.46   15219      0.0191  mix2_pcmu
   1.8    0.26   11.72   15159      0.0172  GSM_decode
   1.8    0.26   11.98   15137      0.0172  GSM_encode
   1.4    0.21   12.19                         Gsm_Long_Term_Synthesis_Filtering
   1.3    0.20   12.39                         _mcount
   1.2    0.18   12.57                         Postprocessing
   1.1    0.16   12.73                         APCM_inverse_quantization
   0.9    0.13   12.86   15352      0.0085  rx
   0.8    0.12   12.98                         Gsm_Coder
   0.7    0.10   13.08                         RPE_grid_positioning
   0.7    0.10   13.18   15137      0.0066  tx_packet
   0.6    0.09   13.27                         APCM_quantization
   0.6    0.09   13.36                         Tk_DoOneEvent
   0.5    0.08   13.44                         $2
   0.5    0.08   13.52                         Reflection_coefficients
   0.5    0.07   13.59                         gsm_encode
   0.3    0.05   13.64                         RPE_grid_selection
   0.3    0.05   13.69   27973      0.0018  tx
   0.3    0.05   13.74                         Quantization_and_coding
   0.3    0.05   13.79                         LARp_to_rp
   0.3    0.05   13.84                         gsm_decode
   0.3    0.04   13.88                         gsm_asl
   0.3    0.04   13.92                         Coefficients_27_39
   0.3    0.04   13.96 131328      0.0003  pcmu_to_l14
   0.2    0.03   13.99                         Gsm_Short_Term_Synthesis_Filter
   0.2    0.03   14.02                         Gsm_Decoder
   0.2    0.03   14.05                         Decoding_of_the_coded_Log_Area_Ratios
   0.2    0.03   14.08   30427      0.0010  peakmeter
   0.2    0.03   14.11   15292      0.0020  rx_stats
   0.2    0.03   14.14   15199      0.0020  tx_member
   0.2    0.03   14.17                         gsm_asr
   0.2    0.03   14.20   45628      0.0007  m_get
   0.2    0.03   14.23                         gsm_div
   0.1    0.02   14.25                         Tk_Release
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   0.1    0.02   14.27   15137      0.0013  cache_read
   0.1    0.02   14.29           1    20.         audio_stats_init
   0.1    0.02   14.31                         Tcl_Eval
   0.1    0.02   14.33   43325      0.0005  file_handler
   0.1    0.02   14.35   30429      0.0007  ring_mix
   0.1    0.02   14.37   73984      0.0003  l14_to_pcmu
   0.1    0.02   14.39   30642      0.0007  ring_left
   0.1    0.02   14.41   30397      0.0007  ring_cpy
   0.1    0.02   14.43   30429      0.0007  bytes2samples
   0.1    0.02   14.45   15199      0.0013  tx_packet_session
   0.1    0.02   14.47                         Coefficients_13_26
   0.1    0.02   14.49   15290      0.0013  tx_local_audio
   0.1    0.02   14.51                         Gsm_RPE_Decoding
   0.1    0.01   14.52   30429      0.0003  htons
   0.1    0.01   14.53     6318      0.002    event
   0.1    0.01   14.54                         $1
   0.1    0.01   14.55   15292      0.0007  rtp_read_data
   0.1    0.01   14.56   45626      0.0002  m_free
   0.1    0.01   14.57   15299      0.0007  ahw_write
   0.1    0.01   14.58                         SetMeterValue
   0.1    0.01   14.59                          Tcl_ScanElement
   0.1    0.01   14.60                         StringFind
   0.1    0.01   14.61   15290      0.0007  play_local
   0.1    0.01   14.62                         Tcl_GetDouble
   0.1    0.01   14.63                         ExprLex
   0.1    0.01   14.64                         gsm_norm
   0.1    0.01   14.65   15202      0.0007  session_ismulticast
   0.1    0.01   14.66                         Gsm_LPC_Analysis
   0.1    0.01   14.67                         Transformation_to_Log_Area_Ratios
   0.1    0.01   14.68   15130      0.0007  ahw_set
   0.1    0.01   14.69                         ValueToPixel
   0.1    0.01   14.70   15137      0.0007  sd
   0.1    0.01   14.71       121      0.08      rtcp_period
   0.1    0.01   14.72                         Tcl_DStringAppendElement
   0.1    0.01   14.73                         TclParseWords
   0.1    0.01   14.74                         Gsm_Short_Term_Analysis_Filter
   0.1    0.01   14.75                         NewVar
   0.1    0.01   14.76                         gcc2_compiled., strtod
   0.1    0.01   14.77                         Tdp_CommandTrace
   0.1    0.01   14.78   30429      0.0003  talking_set
   0.1    0.01   14.79                         RoundToResolution
   0.1    0.01   14.80   15207      0.0007  tsap_ismulticast
   0.1    0.01   14.81   15352      0.0007  UDP_read
   0.1    0.01   14.82   27973      0.0004  ahw_read
   0.1    0.01   14.83                         gsm_sub
   0.0    0.00   14.83           2      0.         Audio_SessionTalk
   0.0    0.00   14.83           1      0.         Audio_SessionListen
   0.0    0.00   14.83   15290      0.0000  talking_check
   0.0    0.00   14.83           2      0.         talking_delete
   0.0    0.00   14.83           2      0.         talking_clear
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   0.0    0.00   14.83           2      0.         Audio_SessionSetAudio
   0.0    0.00   14.83           8      0.         rx_trace
   0.0    0.00   14.83           1      0.          Audio_SessionSetDuplex
   0.0    0.00   14.83           1      0.          Audio_exit
   0.0    0.00   14.83           1      0.          Audio_SessionSetKey
   0.0    0.00   14.83           1      0.          rx_config
   0.0    0.00   14.83   15292      0.0000  rx_debug
   0.0    0.00   14.83         61      0.0        tx_periodic
   0.0    0.00   14.83           1      0.          tx_start
   0.0    0.00   14.83           4      0.          tx_trace
   0.0    0.00   14.83           2      0.          talkspurt
   0.0    0.00   14.83           1      0.          tx_config
   0.0    0.00   14.83           1      0.          tx_packet_init
   0.0    0.00   14.83           1      0.          Audio_SessionSetTTL
   0.0    0.00   14.83           8      0.          Audio_SessionSetSDES
   0.0    0.00   14.83           1      0.          Audio_SessionOpen
   0.0    0.00   14.83           1      0.          Audio_SessionAlloc
   0.0    0.00   14.83           1      0.          Audio_SessionDelete
   0.0    0.00   14.83           1      0.          vat_init
   0.0    0.00   14.83         61      0.0        tx_periodic_audio
   0.0    0.00   14.83           1      0.          audio_out
   0.0    0.00   14.83         59      0.0        tx_samples
   0.0    0.00   14.83           4      0.          audio_close
   0.0    0.00   14.83           1      0.          audio_close_idle
   0.0    0.00   14.83     6291      0.000    audio_vu
   0.0    0.00   14.83           8      0.          audio_chunk
   0.0    0.00   14.83   15412      0.0000  ntohl
   0.0    0.00   14.83           1      0.          ring_create
   0.0    0.00   14.83           1      0.          Audio_SessionFind
   0.0    0.00   14.83           1      0.          session_open
   0.0    0.00   14.83           3      0.          rtp_init
   0.0    0.00   14.83           2      0.          ring_clear
   0.0    0.00   14.83           3      0.          rtp_change_audio
   0.0    0.00   14.83           1      0.          session_add_host
   0.0    0.00   14.83           1      0.          tx_init
   0.0    0.00   14.83           1      0.          tx_packet_close
   0.0    0.00   14.83         62      0.0        notify_set_periodic_func
   0.0    0.00   14.83           1      0.          rx_init
   0.0    0.00   14.83         61      0.0        rx_periodic
   0.0    0.00   14.83   15137      0.0000  tx_session_attach
   0.0    0.00   14.83   15298      0.0000  play_silence
   0.0    0.00   14.83   15292      0.0000  ntohs
   0.0    0.00   14.83   31084      0.0000  htonl
   0.0    0.00   14.83           6      0.          agc_trace
   0.0    0.00   14.83           3      0.          audio_change
   0.0    0.00   14.83   15137      0.0000  agc
   0.0    0.00   14.83   30452      0.0000  audio_open
   0.0    0.00   14.83       169      0.00      audio_descr
   0.0    0.00   14.83   30477      0.0000  ring_action
   0.0    0.00   14.83   15301      0.0000  audio_silence
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   0.0    0.00   14.83         60      0.0        rtp_read_traffic
   0.0    0.00   14.83         60      0.0        rtp_read_sdes
   0.0    0.00   14.83   15137      0.0000  rtp_write_data
   0.0    0.00   14.83           2      0.          debug_file
   0.0    0.00   14.83           2      0.          debug_mask
   0.0    0.00   14.83           1      0.          debug_close
   0.0    0.00   14.83   58839      0.0000  debug
   0.0    0.00   14.83           1      0.          dvi_adpcm_init_state
   0.0    0.00   14.83           1      0.          dvi_adpcm_init
   0.0    0.00   14.83         60      0.0        rtp_read_control
   0.0    0.00   14.83           1      0.          G721_init
   0.0    0.00   14.83           1      0.          G723_init
   0.0    0.00   14.83           6      0.          notify_set_input_func
   0.0    0.00   14.83         59      0.0        gettimeofday_ntp
   0.0    0.00   14.83         60      0.0        timer_handler
   0.0    0.00   14.83         62      0.0        rtp_write_control
   0.0    0.00   14.83         61      0.0        rtp_write_traffic
   0.0    0.00   14.83           1      0.          l16_init
   0.0    0.00   14.83           2      0.          list_to_index
   0.0    0.00   14.83           1      0.          lpc_init
   0.0    0.00   14.83         61      0.0        rtp_write_sdes
   0.0    0.00   14.83   15200      0.0000  m_freem
   0.0    0.00   14.83           1      0.          m_create
   0.0    0.00   14.83         60      0.0        rtp_packets_exp
   0.0    0.00   14.83           1      0.          mix_init
   0.0    0.00   14.83           2      0.          Audio_MemberListen
   0.0    0.00   14.83           1      0.          pcmu_linear_init
   0.0    0.00   14.83   15414      0.0000  member_find
   0.0    0.00   14.83           6      0.          peakmeter_trace
   0.0    0.00   14.83           2      0.          peakmeter_init
   0.0    0.00   14.83           4      0.          md_32
   0.0    0.00   14.83           4      0.          random32
   0.0    0.00   14.83         11      0.0        sd_trace
   0.0    0.00   14.83           1      0.          sd_init
   0.0    0.00   14.83           1      0.          source_file
   0.0    0.00   14.83         14      0.0        strsaven
   0.0    0.00   14.83           2      0.          tcl
   0.0    0.00   14.83       121      0.00      timeval_ntp32
   0.0    0.00   14.83         10      0.0        tsap_alloc
   0.0    0.00   14.83           9      0.          tsap_free
   0.0    0.00   14.83   15358      0.0000  tsap_cpy
   0.0    0.00   14.83           2      0.          tsap_equ_a
   0.0    0.00   14.83       432      0.00      tsap_ntoa
   0.0    0.00   14.83           1      0.          agc_init
   0.0    0.00   14.83           1      0.          tsap_gethostaddress
   0.0    0.00   14.83           4      0.          tsap_getport
   0.0    0.00   14.83           7      0.          tsap_setport
   0.0    0.00   14.83           1      0.          tsap_gethostbyname
   0.0    0.00   14.83           2      0.          tsap_sprintf
   0.0    0.00   14.83           2      0.          tsap_ip4
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   0.0    0.00   14.83         11      0.0        htons
   0.0    0.00   14.83           4      0.          ntohs
   0.0    0.00   14.83           2      0.          UDP_connect
   0.0    0.00   14.83       136      0.00      audio_cmp
   0.0    0.00   14.83   15199      0.0000  UDP_write
   0.0    0.00   14.83           2      0.          UDP_close
   0.0    0.00   14.83           2      0.          itoa
   0.0    0.00   14.83         13      0.0        ahw_open_control
   0.0    0.00   14.83           4      0.          ahw_getdev
   0.0    0.00   14.83           1      0.          ahw_open
   0.0    0.00   14.83           1      0.          ahw_close
   0.0    0.00   14.83           2      0.          audio_seconds_to_bytes
   0.0    0.00   14.83           3      0.          ahw_fmt
   0.0    0.00   14.83       298      0.00      ahw_write_queue
   0.0    0.00   14.83         30      0.0        exp10
   0.0    0.00   14.83           4      0.          gethostid
   0.0    0.00   14.83           2      0.          signal
   0.0    0.00   14.83           4      0.          MD5Init
   0.0    0.00   14.83         12      0.0        MD5Update
   0.0    0.00   14.83           4      0.          MD5Final
   0.0    0.00   14.83         84      0.0        MD5Transform
   0.0    0.00   14.83           8      0.          Encode
   0.0    0.00   14.83         84      0.0        Decode
   0.0    0.00   14.83           2      0.          Audio_MemberDelete
   0.0    0.00   14.83           2      0.          Audio_MemberClose
   0.0    0.00   14.83           2      0.          member_add
   0.0    0.00   14.83         61      0.0        member_announce
   0.0    0.00   14.83       430      0.00      member_sdes
   0.0    0.00   14.83           1      0.          Audio_init
   0.0    0.00   14.83           1      0.          cmd_init
   0.0    0.00   14.83           2      0.          cmd_terminate
   0.0    0.00   14.83           2      0.          cmd_simple
   0.0    0.00   14.83           2      0.          g711_init
   0.0    0.00   14.83         17      0.0        cmd_member
   0.0    0.00   14.83           2      0.          gettimeofday_double
   0.0    0.00   14.83           1      0.          cmd_session_audio
   0.0    0.00   14.83         26      0.0        cmd_session
   0.0    0.00   14.83           4      0.          cmd_general
   0.0    0.00   14.83           1      0.          Tcl_AppInit
   0.0    0.00   14.83     6291      0.000    vu_show
   0.0    0.00   14.83           1      0.          main
   0.0    0.00   14.83           2      0.          GSM_init
   0.0    0.00   14.83           2      0.          list_key2value
   0.0    0.00   14.83       549      0.00      rtcp_text
   0.0    0.00   14.83           1      0.          onlyone
   0.0    0.00   14.83           1      0.          strcpy_pad
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APPENDIX 4:

Profile file of Nevot CPU consumption with LPC audio coding

%Time Seconds Cumsecs #Calls msec/call Name

 36.3    9.16     9.16   14967      0.6120  lpc_decode_frame
 35.6    8.98   18.14   45360      0.1980  auto_correl
   6.9    1.74   19.88   15120      0.1151  lpc_encode_frame
   6.7    1.70   21.58   30175      0.0563  audio_stats
   3.6    0.90   22.48   15120      0.0595  inverse_filter
   2.8    0.70   23.18 2409776    0.0003  l16_to_pcmu
   1.8    0.46   23.64   30240      0.0152  durbin
   0.8    0.21   23.85   15041      0.0140  mix2_pcmu
   0.6    0.15   24.00                                _mcount
   0.6    0.14   24.14                         Tk_DoOneEvent
   0.4    0.11   24.25   15120      0.0073  calc_pitch
   0.3    0.07   24.32   14968      0.0047  rx
   0.3    0.07   24.39   30087      0.0023  ring_mix
   0.3    0.07   24.46   15120      0.0046  agc
   0.2    0.06   24.52   15120      0.0040  tx_packet
   0.2    0.05   24.57   30087      0.0017  bytes2samples
   0.2    0.04   24.61   15120      0.0026  tx_local_audio
   0.1    0.03   24.64   14967      0.0020  lpc_decode
   0.1    0.03   24.67 131328      0.0002  pcmu_to_l14
   0.1    0.03   24.70   73984      0.0004  l14_to_pcmu
   0.1    0.03   24.73                         TclParseWords
   0.1    0.03   24.76   15122      0.0020  tx_packet_session
   0.1    0.03   24.79   27634      0.0011  tx
   0.1    0.02   24.81                         DisplayVerticalMeter
   0.1    0.02   24.83                         Tcl_ConvertElement
   0.1    0.02   24.85   29995      0.0007  ring_action
   0.1    0.02   24.87                         $2
   0.1    0.02   24.89   14974      0.0013  tsap_cpy
   0.1    0.02   24.91   14968      0.0013  UDP_read
   0.1    0.02   24.93   15120      0.0013  play_local
   0.1    0.02   24.95                         Tcl_Eval
   0.1    0.02   24.97   14967      0.0013  rx_stats
   0.1    0.02   24.99   15120      0.0013  rtp_write_data
   0.1    0.02   25.01   14971      0.0013  member_find
   0.0    0.01   25.02                         Tcl_GetInt, gcc2_compiled.
   0.0    0.01   25.03                         Tdp_CreateAddress
   0.0    0.01   25.04                         InterpProc
   0.0    0.01   25.05         84      0.1        MD5Transform
   0.0    0.01   25.06   15120      0.0007  cache_read
   0.0    0.01   25.07   29963      0.0003  ring_cpy
   0.0    0.01   25.08                         Tk_HandleEvent
   0.0    0.01   25.09   15120      0.0007  talking_check
   0.0    0.01   25.10                         Tcl_ScanElement
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   0.0    0.01   25.11   29935      0.0003  audio_open
   0.0    0.01   25.12   15113      0.0007  ahw_set
   0.0    0.01   25.13   15122      0.0007  tx_member
   0.0    0.01   25.14   15122      0.0007  UDP_write
   0.0    0.01   25.15   14967      0.0007  rx_debug
   0.0    0.01   25.16   14967      0.0007  rtp_read_data
   0.0    0.01   25.17   30240      0.0003  peakmeter
   0.0    0.01   25.18                         Tcl_SetVar2
   0.0    0.01   25.19   15125      0.0007  session_ismulticast
   0.0    0.01   25.20   15120      0.0007  lpc_encode
   0.0    0.01   25.21                         gcc2_compiled., strtoul
   0.0    0.01   25.22   27634      0.0004  ahw_read
   0.0    0.01   25.23   15058      0.0007  audio_silence
   0.0    0.01   25.24                         Tdp_CommandTrace
   0.0    0.00   25.24   30087      0.0000  htons
   0.0    0.00   25.24   14967      0.0000  ntohl
   0.0    0.00   25.24   14967      0.0000  ntohs
   0.0    0.00   25.24           3      0.         talkspurt
   0.0    0.00   25.24           2      0.         member_add
   0.0    0.00   25.24           1      0.         rtp_read_control
   0.0    0.00   25.24   30087      0.0000  htonl
   0.0    0.00   25.24           1      0.          rx_periodic
   0.0    0.00   25.24           1      0.          rx_init
   0.0    0.00   25.24           3      0.          rtp_change_audio
   0.0    0.00   25.24           3      0.          rtp_init
   0.0    0.00   25.24           2      0.          member_announce
   0.0    0.00   25.24           1      0.          rtp_read_traffic
   0.0    0.00   25.24           1      0.          rtp_read_sdes
   0.0    0.00   25.24           2      0.          Audio_MemberClose
   0.0    0.00   25.24           1      0.          Audio_SessionSetTTL
   0.0    0.00   25.24           1      0.          Audio_SessionSetKey
   0.0    0.00   25.24           1      0.          Audio_SessionSetDuplex
   0.0    0.00   25.24           2      0.          Audio_SessionTalk
   0.0    0.00   25.24           2      0.          rtp_write_control
   0.0    0.00   25.24           1      0.          rtp_write_traffic
   0.0    0.00   25.24           1      0.          rtp_write_sdes
   0.0    0.00   25.24           9      0.          rtcp_text
   0.0    0.00   25.24   15055      0.0000  play_silence
   0.0    0.00   25.24         17      0.0        member_sdes
   0.0    0.00   25.24           8      0.          rx_trace
   0.0    0.00   25.24           1      0.          rx_config
   0.0    0.00   25.24           4      0.          tx_trace
   0.0    0.00   25.24           1      0.          session_open
   0.0    0.00   25.24           1      0.          tx_periodic_audio
   0.0    0.00   25.24           1      0.          Audio_init
   0.0    0.00   25.24           1      0.          session_add_host
   0.0    0.00   25.24           1      0.          tx_start
   0.0    0.00   25.24           1      0.          Audio_SessionFind
   0.0    0.00   25.24           1      0.          tx_init
   0.0    0.00   25.24           1      0.          Audio_SessionDelete



114

   0.0    0.00   25.24           1      0.          tx_packet_close
   0.0    0.00   25.24   15120      0.0000  tx_session_attach
   0.0    0.00   25.24           1      0.          Audio_SessionAlloc
   0.0    0.00   25.24     3457      0.000    event
   0.0    0.00   25.24           1      0.          Audio_SessionOpen
   0.0    0.00   25.24           8      0.          Audio_SessionSetSDES
   0.0    0.00   25.24           2      0.          Audio_SessionSetAudio
   0.0    0.00   25.24           1      0.          vat_init
   0.0    0.00   25.24           2      0.          Audio_MemberListen
   0.0    0.00   25.24           1      0.          Audio_exit
   0.0    0.00   25.24           1      0.          Audio_SessionListen
   0.0    0.00   25.24           4      0.          audio_close
   0.0    0.00   25.24           1      0.          audio_close_idle
   0.0    0.00   25.24   30087      0.0000  talking_set
   0.0    0.00   25.24     3426      0.000    audio_vu
   0.0    0.00   25.24           2      0.          talking_delete
   0.0    0.00   25.24           2      0.          cmd_simple
   0.0    0.00   25.24           1      0.          ring_create
   0.0    0.00   25.24         21      0.0        cmd_member
   0.0    0.00   25.24           2      0.          talking_clear
   0.0    0.00   25.24   30242      0.0000  ring_left
   0.0    0.00   25.24           1      0.          cmd_session_audio
   0.0    0.00   25.24           2      0.          Audio_MemberDelete
   0.0    0.00   25.24           1      0.          tx_config
   0.0    0.00   25.24           2      0.          notify_set_periodic_func
   0.0    0.00   25.24           1      0.          tx_periodic
   0.0    0.00   25.24           1      0.          cmd_init
   0.0    0.00   25.24           1      0.          tx_packet_init
   0.0    0.00   25.24           2      0.          cmd_terminate
   0.0    0.00   25.24           6      0.          agc_trace
   0.0    0.00   25.24           1      0.          agc_init
   0.0    0.00   25.24         26      0.0        cmd_session
   0.0    0.00   25.24       169      0.00      audio_descr
   0.0    0.00   25.24           2      0.          audio_seconds_to_bytes
   0.0    0.00   25.24           1      0.          audio_stats_init
   0.0    0.00   25.24           2      0.          debug_file
   0.0    0.00   25.24           2      0.          debug_mask
   0.0    0.00   25.24           1      0.          debug_close
   0.0    0.00   25.24   57748      0.0000  debug
   0.0    0.00   25.24           1      0.          dvi_adpcm_init_state
   0.0    0.00   25.24           1      0.          dvi_adpcm_init
   0.0    0.00   25.24           2      0.          g711_init
   0.0    0.00   25.24           3      0.          audio_change
   0.0    0.00   25.24           1      0.          audio_out
   0.0    0.00   25.24           4      0.          cmd_general
   0.0    0.00   25.24           2      0.          gettimeofday_double
   0.0    0.00   25.24           1      0.          GSM_init
   0.0    0.00   25.24           8      0.          audio_chunk
   0.0    0.00   25.24           2      0.          list_to_index
   0.0    0.00   25.24           2      0.          ring_clear
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   0.0    0.00   25.24           2      0.          list_key2value
   0.0    0.00   25.24           1      0.          Tcl_AppInit
   0.0    0.00   25.24     3426      0.000    vu_show
   0.0    0.00   25.24           2      0.          lpc_init
   0.0    0.00   25.24           1      0.          main
   0.0    0.00   25.24   42602      0.0000  file_handler
   0.0    0.00   25.24           6      0.          notify_set_input_func
   0.0    0.00   25.24   45364      0.0000  m_get
   0.0    0.00   25.24   15123      0.0000  m_freem
   0.0    0.00   25.24           1      0.          m_create
   0.0    0.00   25.24           1      0.          mix_init
   0.0    0.00   25.24           1      0.          onlyone
   0.0    0.00   25.24           2      0.          rtcp_period
   0.0    0.00   25.24           1      0.          pcmu_linear_init
   0.0    0.00   25.24           6      0.          peakmeter_trace
   0.0    0.00   25.24           2      0.          peakmeter_init
   0.0    0.00   25.24           4      0.          md_32
   0.0    0.00   25.24           4      0.          random32
   0.0    0.00   25.24         11      0.0        sd_trace
   0.0    0.00   25.24           1      0.          sd_init
   0.0    0.00   25.24   15120      0.0000  sd
   0.0    0.00   25.24           1      0.          source_file
   0.0    0.00   25.24           1      0.          strcpy_pad
   0.0    0.00   25.24         14      0.0        strsaven
   0.0    0.00   25.24           2      0.          tcl
   0.0    0.00   25.24           1      0.          timeval_ntp32
   0.0    0.00   25.24         10      0.0        tsap_alloc
   0.0    0.00   25.24           9      0.          tsap_free
   0.0    0.00   25.24           2      0.          tsap_equ_a
   0.0    0.00   25.24         19      0.0        tsap_ntoa
   0.0    0.00   25.24   15130      0.0000  tsap_ismulticast
   0.0    0.00   25.24           1      0.          tsap_gethostaddress
   0.0    0.00   25.24           4      0.          tsap_getport
   0.0    0.00   25.24           7      0.          tsap_setport
   0.0    0.00   25.24           1      0.          tsap_gethostbyname
   0.0    0.00   25.24           2      0.          tsap_sprintf
   0.0    0.00   25.24           2      0.          tsap_ip4
   0.0    0.00   25.24         11      0.0        htons
   0.0    0.00   25.24           4      0.          ntohs
   0.0    0.00   25.24           2      0.          UDP_connect
   0.0    0.00   25.24           2      0.          UDP_close
   0.0    0.00   25.24           2      0.          itoa
   0.0    0.00   25.24         13      0.0        ahw_open_control
   0.0    0.00   25.24           4      0.          ahw_getdev
   0.0    0.00   25.24           1      0.          ahw_open
   0.0    0.00   25.24           1      0.          ahw_close
   0.0    0.00   25.24           3      0.          ahw_fmt
   0.0    0.00   25.24       294      0.00      ahw_write_queue
   0.0    0.00   25.24   15058      0.0000  ahw_write
   0.0    0.00   25.24       144      0.00      audio_cmp
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   0.0    0.00   25.24         30      0.0        exp10
   0.0    0.00   25.24           4      0.          gethostid
   0.0    0.00   25.24           2      0.          signal
   0.0    0.00   25.24           4      0.          MD5Init
   0.0    0.00   25.24         12      0.0        MD5Update
   0.0    0.00   25.24           4      0.          MD5Final
   0.0    0.00   25.24           8      0.          Encode
   0.0    0.00   25.24         84      0.0        Decode
   0.0    0.00   25.24           1      0.         l16_init
   0.0    0.00   25.24           1      0.         G721_init
   0.0    0.00   25.24           1      0.          G723_init
   0.0    0.00   25.24   45362      0.0000  m_free
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APPENDIX 5:

Recorded debugging file of the received RTP-headers

901004499.738370 audio opened
901004499.739854 delay.multiplier=4 ring.next=12589920 ring.size=32768
901004499.739938 T+l  timestamp      seqno          t      delay          p      slack    d_avg    d_var      d_est
901004499.740012 T+l 2734872318     65011   12589920 1572684898   12589920          0      800      200 4294967295
901004499.749683  +l 2734872478      65012   12589920 1572684898   12589920          0      760      228 1572684898
901004499.769639  +l 2734872638      65013   12590080 1572684898   12590080          0      722      253 1572684738
901004499.789523  +l 2734872798      65014   12590240 1572684898   12590240          0      686      274 1572684738
901004499.809606  +l 2734872958      65015   12590400 1572684898   12590400          0      652      293 1572684738
901004499.820256 audio underflow (0)
901004499.829539  +l 2734873118      65016   12590560 1572684898   12590560          0      620      309 1572684738
901004499.849542  +l 2734873278      65017   12590720 1572684898   12590720          0      589      323 1572684738
901004499.869532  +l 2734873438      65018   12590880 1572684898   12590880          0      560      335 1572684738
901004499.889511  +l 2734873598      65019   12591040 1572684898   12591040          0      532      345 1572684738
901004499.909500  +l 2734873758      65020   12591200 1572684898   12591200          0      505      353 1572684738
901004499.929509  +l 2734873918      65021   12591360 1572684898   12591360          0      480      359 1572684738
901004499.949499  +l 2734874078      65022   12591520 1572684898   12591520          0      456      364 1572684738
901004499.969494  +l 2734874238      65023   12591680 1572684898   12591680          0      433      367 1572684738
901004499.989491  +l 2734874398      65024   12591840 1572684898   12591840          0      412      370 1572684738
901004500.009495  +l 2734874558      65025   12592000 1572684898   12592000          0      391      371 1572684738
901004500.029482  +l 2734874718      65026   12592160 1572684898   12592160          0      372      371 1572684738
901004500.049486  +l 2734874878      65027   12592320 1572684898   12592320          0      353      370 1572684738
901004500.069477  +l 2734875038      65028   12592480 1572684898   12592480          0      336      368 1572684738
901004500.089472  +l 2734875198      65029   12592640 1572684898   12592640          0      319      366 1572684738
901004500.109478  +l 2734875358      65030   12592800 1572684898   12592800          0      303      363 1572684738
901004500.129467  +l 2734875518      65031   12592960 1572684898   12592960          0      288      359 1572684738
901004500.149463  +l 2734875678      65032   12593120 1572684898   12593120          0      274      355 1572684738
901004500.169467  +l 2734875838      65033   12593280 1572684898   12593280          0      260      350 1572684738
901004500.189453  +l 2734875998      65034   12593440 1572684898   12593440          0      247      345 1572684738
901004500.209516  +l 2734876158      65035   12593600 1572684898   12593600          0      235      339 1572684738
901004500.229459  +l 2734876318      65036   12593760 1572684898   12593760          0      223      334 1572684738
901004500.249448  +l 2734876478      65037   12593920 1572684898   12593920          0      212      328 1572684738
901004500.269439  +l 2734876638      65038   12594080 1572684898   12594080          0      201      321 1572684738
901004500.289437  +l 2734876798      65039   12594240 1572684898   12594240          0      191      315 1572684738
901004500.309435  +l 2734876958      65040   12594400 1572684898   12594400          0      182      308 1572684738
901004500.329422  +l 2734877118      65041   12594560 1572684898   12594560          0      173      301 1572684738
901004500.349439  +l 2734877278      65042   12594720 1572684898   12594720          0      164      295 1572684738
901004500.369425  +l 2734877438      65043   12594880 1572684898   12594880          0      156      288 1572684738
901004500.389411  +l 2734877598      65044   12595040 1572684898   12595040          0      148      281 1572684738
901004500.409483  +l 2734877758      65045   12595200 1572684898   12595200          0      141      274 1572684738
901004500.429551  +l 2734877918      65046   12595360 1572684898   12595360          0      134      267 1572684738
901004500.449422  +l 2734878078      65047   12595520 1572684898   12595520          0      127      260 1572684738
901004500.469415  +l 2734878238      65048   12595680 1572684898   12595680          0      121      253 1572684738
901004500.489413  +l 2734878398      65049   12595840 1572684898   12595840          0      115      246 1572684738
901004500.509389  +l 2734878558      65050   12596000 1572684898   12596000          0      109      239 1572684738
901004500.529393  +l 2734878718      65051   12596160 1572684898   12596160          0      104      233 1572684738
901004500.549387  +l 2734878878      65052   12596320 1572684898   12596320          0       99      226 1572684738
901004500.569382  +l 2734879038      65053   12596480 1572684898   12596480          0       94      219 1572684738
901004500.589382  +l 2734879198      65054   12596640 1572684898   12596640          0       89      213 1572684738
901004500.609388  +l 2734879358      65055   12596800 1572684898   12596800          0       85      206 1572684738
901004500.629365  +l 2734879518      65056   12596960 1572684898   12596960          0       80      200 1572684738
901004500.649373  +l 2734879678      65057   12597120 1572684898   12597120          0       76      194 1572684738
901004500.669370  +l 2734879838      65058   12597280 1572684898   12597280          0       73      188 1572684738
901004500.689363  +l 2734879998      65059   12597440 1572684898   12597440          0       69      182 1572684738
901004500.709361  +l 2734880158      65060   12597600 1572684898   12597600          0       66      176 1572684738
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901004500.729357  +l 2734880318      65061   12597760 1572684898   12597760          0       62      171 1572684738
901004500.749351  +l 2734880478      65062   12597920 1572684898   12597920          0       59      165 1572684738
901004500.769374  +l 2734880638      65063   12598080 1572684898   12598080          0       56      160 1572684738
901004500.789349  +l 2734880798      65064   12598240 1572684898   12598240          0       53      154 1572684738
901004500.809416  +l 2734880958      65065   12598400 1572684898   12598400          0       51      149 1572684738
901004500.819931 audio underflow (160)
901004500.829345  +l 2734881118      65066   12598560 1572684898   12598560          0       48      144 1572684738
901004500.849344  +l 2734881278      65067   12598720 1572684898   12598720          0       46      139 1572684738
……

901004510.930978  +l 2734961918         35   12679360 1572684898   12679360          0        0        0 1572684738
901004510.947621  +l 2734962078         36   12679520 1572684898   12679520          0        0        0 1572684738
901004510.967431  +l 2734962238         37   12679680 1572684898   12679680          0        0        0 1572684738
901004510.987828  +l 2734962398         38   12679840 1572684898   12679840          0        0        0 1572684738
901004510.998093 audio underflow (320)
901004511.007437  +l 2734962558         39   12680000 1572684898   12680000          0        0        0 1572684738
901004511.027412  +l 2734962718         40   12680160 1572684898   12680160          0        0        0 1572684738
901004511.047384  +l 2734962878         41   12680320 1572684898   12680320          0        0        0 1572684738
901004511.067360  +l 2734963038         42   12680480 1572684898   12680480          0        0        0 1572684738
901004511.087416  +l 2734963198         43   12680640 1572684898   12680640          0        0        0 1572684738
901004511.107409  +l 2734963358         44   12680800 1572684898   12680800          0        0        0 1572684738
901004511.127379  +l 2734963518         45   12680960 1572684898   12680960          0        0        0 1572684738
901004511.147349  +l 2734963678         46   12681120 1572684898   12681120          0        0        0 1572684738
901004511.167383  +l 2734963838         47   12681280 1572684898   12681280          0        0        0 1572684738
901004511.187332  +l 2734963998         48   12681440 1572684898   12681440          0        0        0 1572684738
901004511.207362  +l 2734964158         49   12681600 1572684898   12681600          0        0        0 1572684738
901004511.227330  +l 2734964318         50   12681760 1572684898   12681760          0        0        0 1572684738
901004511.247348  +l 2734964478         51   12681920 1572684898   12681920          0        0        0 1572684738
901004511.267375  +l 2734964638         52   12682080 1572684898   12682080          0        0        0 1572684738
901004511.287349  +l 2734964798         53   12682240 1572684898   12682240          0        0        0 1572684738
901004511.307310  +l 2734964958         54   12682400 1572684898   12682400          0        0        0 1572684738
901004511.328600  +l 2734965118         55   12682560 1572684898   12682560          0        0        0 1572684738
901004511.347315  +l 2734965278         56   12682720 1572684898   12682720          0        0        0 1572684738
901004511.367681  +l 2734965438         57   12682880 1572684898   12682880          0        0        0 1572684738
901004511.387309  +l 2734965598         58   12683040 1572684898   12683040          0        0        0 1572684738
901004511.407291  +l 2734965758         59   12683200 1572684898   12683200          0        0        0 1572684738
901004511.427289  +l 2734965918         60   12683360 1572684898   12683360          0        0        0 1572684738
901004511.447293  +l 2734966078         61   12683520 1572684898   12683520          0        0        0 1572684738
901004511.467286  +l 2734966238         62   12683680 1572684898   12683680          0        0        0 1572684738
901004511.487378  +l 2734966398         63   12683840 1572684898   12683840          0        0        0 1572684738
901004511.507333  +l 2734966558         64   12684000 1572684898   12684000          0        0        0 1572684738
901004511.527282  +l 2734966718         65   12684160 1572684898   12684160          0        0        0 1572684738
901004511.547266  +l 2734966878         66   12684320 1572684898   12684320          0        0        0 1572684738
901004511.567265  +l 2734967038         67   12684480 1572684898   12684480          0        0        0 1572684738
901004511.587321  +l 2734967198         68   12684640 1572684898   12684640          0        0        0 1572684738
901004511.607245  +l 2734967358         69   12684800 1572684898   12684800          0        0        0 1572684738
901004511.627283  +l 2734967518         70   12684960 1572684898   12684960          0        0        0 1572684738
901004511.647251  +l 2734967678         71   12685120 1572684898   12685120          0        0        0 1572684738
901004511.667266  +l 2734967838         72   12685280 1572684898   12685280          0        0        0 1572684738
901004511.687249  +l 2734967998         73   12685440 1572684898   12685440          0        0        0 1572684738
901004511.707237  +l 2734968158         74   12685600 1572684898   12685600          0        0        0 1572684738
901004511.727242  +l 2734968318         75   12685760 1572684898   12685760          0        0        0 1572684738
901004511.747224  +l 2734968478         76   12685920 1572684898   12685920          0        0        0 1572684738
901004511.767238  +l 2734968638         77   12686080 1572684898   12686080          0        0        0 1572684738
901004511.787419  +l 2734968798         78   12686240 1572684898   12686240          0        0        0 1572684738
901004511.807221  +l 2734968958         79   12686400 1572684898   12686400          0        0        0 1572684738
901004511.827215  +l 2734969118         80   12686560 1572684898   12686560          0        0        0 1572684738
901004511.847214  +l 2734969278         81   12686720 1572684898   12686720          0        0        0 1572684738
901004511.867213  +l 2734969438         82   12686880 1572684898   12686880          0        0        0 1572684738
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APPENDIX 6:

Matlab implementation of algorithm 1

load rx1 -ascii;               % received headers
rx_ts = rx1(:,1);        % timestamps of received packets
rx_packets = size(rx_ts)       % number of packets received

load tx1 -ascii;               % transmitted headers
tx_sd = tx1(:,2);        % silence detector values
tx_ts = tx1(:,1);        % timestamps of sent packets

tx_packets = 0;
for j = 1:size(tx_sd)          % count nr. of transmitted packets

if tx_sd(j)==1         % part of talkspurt if=1
        tx_packets = tx_packets+1;
     end
end

tx_packets % if tx_packets=rx_packets, no packets lost in network

j = 1; k = 1; l = tx_packets;

% compute 2-dim. matrix from transmitted packets
% 1.col=timestamp, 2.col indicates beginning of talkspurt

while (l > 0)
while (tx_sd(j) ~= 1)  

                 j = j+1;    % find beginning of talkspurt
end

                          % compensate clock skew
        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
        sent_packets(k,2) = 1; % mark beg. of talkspurt with 1
        j = j+2;
        k = k+1;
        l = l-1;

        while (tx_sd(j) ~= 0)
                j = j+1;
                if (tx_sd(j) == 1)
                        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
                        sent_packets(k,2) = 0; % mark rest of talkspurt with 0
                        k = k+1;
                        l = l-1;
                end
        end
end

% compute delay vector

for i = 1:tx_packets
        delay(i) = rx_ts(i) - sent_packets(i,1);
end

% calculate minimum delay

delay_min = delay(1);
for i = 2:tx_packets

if (delay(i) < delay_min)
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delay_min = delay(i);
end

end

delay_min

% subtract min. delay i.e. clock difference and propagation delay

for i = 1:tx_packets
delay(i) = delay(i)-delay_min;

end

% plot(delay)

x = 1;
for beta = 0.5:0.5:20
beta

% calculate playout delays

alpha = 0.999;
delay_k = delay(1);
var_k = abs(delay(2)-delay(1));
pl_delay(1) = delay_k+beta*var_k;

for i = 2:tx_packets
        delay_k_minus1 = delay_k;
        delay_k = alpha * delay_k_minus1 + (1-alpha) * delay(i);
        var_k_minus1 = var_k;
        var_k = alpha * var_k_minus1 + (1-alpha) * ( abs(delay_k_minus1-delay(i)) );
        pl_delay(i) = delay_k + beta * var_k;
end

% plot(pl_delay)

k = 2; collisions = 0; pl_del = pl_delay(1);

% playout delay must be constant during a talkspurt

while (k < tx_packets)
        if (sent_packets(k,2) == 1)        % check that talkspurts do not overlap

if ( (sent_packets(k,1) + pl_delay(k)) < (sent_packets(k-1,1) + pl_delay(k-1)
+ 0.02) )
                           collisions = collisions + 1;
                           pl_delay(k) = sent_packets(k-1,1)+pl_delay(k-1)+0.02-sent_packets(k,1);
                end
                pl_del = pl_delay(k);
                k = k+1;
        end
        while (sent_packets(k,2) == 0)
                pl_delay(k) = pl_del;
                if (k == tx_packets)
                         break;
                else
                         k = k+1;
                end
        end
end
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collisions

% plot(pl_delay)

late = 0;

% count late arrived packets

for i = 1:tx_packets
        if ( rx_ts(i) > ( sent_packets(i,1) + delay_min + pl_delay(i) ) )
                  late = late + 1;
        end
end

% compute packet loss rate

loss = (late/tx_packets)*100

% compute average playout delay

sum = 0;
for i = 1:tx_packets
        sum = sum + pl_delay(i);
end

delay_mean = sum/tx_packets

res(x,1) = loss;
res(x,2) = delay_mean;
res(x,3) = collisions;
x = x+1;
end

save t1a1_999 res -ascii;
plot(res(:,1),res(:,2))
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APPENDIX 7:

Matlab implementation of algorithm 2

load rx1 -ascii;               % received headers
rx_ts = rx1(:,1);        % timestamps of received packets
rx_packets = size(rx_ts)       % number of packets received

load tx1 -ascii;               % transmitted headers
tx_sd = tx1(:,2);        % silence detector values
tx_ts = tx1(:,1);        % timestamps of sent packets

tx_packets = 0;
for j = 1:size(tx_sd)          % count nr. of transmitted packets

if tx_sd(j)==1         % part of talkspurt if=1
        tx_packets = tx_packets+1;
     end
end

tx_packets % if tx_packets=rx_packets, no packets lost in network

j = 1; k = 1; l = tx_packets;

% compute 2-dim. matrix from transmitted packets
% 1.col=timestamp, 2.col indicates beginning of talkspurt

while (l > 0)
while (tx_sd(j) ~= 1)  

                 j = j+1;    % find beginning of talkspurt
end

                         % compensate clock skew
        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
        sent_packets(k,2) = 1; % mark beg. of talkspurt with 1
        j = j+2;
        k = k+1;
        l = l-1;

        while (tx_sd(j) ~= 0)
                j = j+1;
                if (tx_sd(j) == 1)
                        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
                        sent_packets(k,2) = 0; % mark rest of talkspurt with 0
                        k = k+1;
                        l = l-1;
                end
        end
end

% compute delay vector

for i = 1:tx_packets
        delay(i) = rx_ts(i) - sent_packets(i,1);
end

% calculate minimum delay

delay_min = delay(1);
for i = 2:tx_packets

if (delay(i) < delay_min)
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delay_min = delay(i);
end

end

delay_min

% subtract min. delay i.e. clock difference and propagation delay

for i = 1:tx_packets
delay(i) = delay(i)-delay_min;

end

% plot(delay)

x = 1;
for beta = 0.5:0.5:20
beta

% calculate playout delays

alpha = 0.990;
mode = 1;            % 1=NORMAL, 2=SPIKE
spikes = 0;
sp_var = 0;
delay_k = delay(1);
var_k = abs(delay(2)-delay(1));
pl_delay(1) = delay_k+beta*var_k;

for i = 2:tx_packets
        delay_k_minus1 = delay_k;
        var_k_minus1 = var_k;

        if (abs(delay(i)-delay(i-1)) > (var_k_minus1*2+0.8))  % mode = SPIKE
                  mode = 2;

  spikes = spikes + 1;
                  sp_var = 0;
        else                                              % mode = NORMAL
                  if (i==2)                               % if i = 2 can't subtract delay(0)
                           sp_var = sp_var/2 + abs((delay(i) - delay(i-1))/4);
                  else
                           sp_var = sp_var/2 + abs((2*delay(i) - delay(i-1) - delay(i-2))/8);
                  end

                  if (sp_var <= 0.063)
                           mode = 1;
                  end
        end

        if (mode == 1)
                  delay_k = alpha*delay_k_minus1+(1-alpha)*delay(i); % NORMAL mode
        else
                  delay_k = delay_k_minus1 + abs(delay(i) - delay(i-1));  % SPIKE mode
        end

        var_k = alpha*var_k_minus1+(1-alpha)*(abs(delay_k_minus1-delay(i)));
        pl_delay(i) = delay_k + beta * var_k;
end

spikes
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% plot(pl_delay)

k = 2; collisions = 0; pl_del = pl_delay(1);

% playout delay must be constant during a talkspurt

while (k < tx_packets)
        if (sent_packets(k,2) == 1)        % check that talkspurts do not overlap
                if ( (sent_packets(k,1) + pl_delay(k)) < (sent_packets(k-1,1) + pl_delay(k-1) +
0.02) )
                           collisions = collisions + 1;
                           pl_delay(k) = sent_packets(k-1,1)+pl_delay(k-1)+0.02-sent_packets(k,1);
                end
                pl_del = pl_delay(k);
                k = k+1;
        end
        while (sent_packets(k,2) == 0)
                pl_delay(k) = pl_del;
                if (k == tx_packets)
                         break;
                else
                         k = k+1;
                end
        end
end

collisions

plot(pl_delay)

late = 0;

% count late arrived packets

for i = 1:tx_packets
        if ( rx_ts(i) > ( sent_packets(i,1) + delay_min + pl_delay(i) ) )
                  late = late + 1;
        end
end

% compute packet loss rate

loss = (late/tx_packets)*100

% compute average playout delay

sum = 0;
for i = 1:tx_packets
        sum = sum + pl_delay(i);
end

delay_mean = sum/tx_packets

res(x,1) = loss;
res(x,2) = delay_mean;
res(x,3) = spikes;
res(x,4) = collisions;
x = x+1;
end
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 save t1a2_990 res -ascii;
plot(res(:,1),res(:,2))
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APPENDIX 8:

Matlab implementation of algorithm 3

load rx1 -ascii;               % received headers
rx_ts = rx1(:,1);        % timestamps of received packets
rx_packets = size(rx_ts)       % number of packets received

load tx1 -ascii;               % transmitted headers
tx_sd = tx1(:,2);        % silence detector values
tx_ts = tx1(:,1);        % timestamps of sent packets

tx_packets = 0;
for j = 1:size(tx_sd)          % count nr. of transmitted packets

if tx_sd(j)==1         % part of talkspurt if=1
        tx_packets = tx_packets+1;
     end
end

tx_packets % if tx_packets=rx_packets, no packets lost in network

j = 1; k = 1; l = tx_packets;

% compute 2-dim. matrix from transmitted packets
% 1.col=timestamp, 2.col indicates beginning of talkspurt

while (l > 0)
while (tx_sd(j) ~= 1)  

                 j = j+1;    % find beginning of talkspurt
end

                          % compensate clock skew
        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
        sent_packets(k,2) = 1; % mark beg. of talkspurt with 1
        j = j+2;
        k = k+1;
        l = l-1;

        while (tx_sd(j) ~= 0)
                j = j+1;
                if (tx_sd(j) == 1)
                        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
                        sent_packets(k,2) = 0; % mark rest of talkspurt with 0
                        k = k+1;
                        l = l-1;
                end
        end
end

% compute delay vector

for i = 1:tx_packets
        delay(i) = rx_ts(i) - sent_packets(i,1);
end

% calculate minimum delay

delay_min = delay(1);
for i = 2:tx_packets

if (delay(i) < delay_min)
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delay_min = delay(i);
end

end

delay_min

% subtract min. delay i.e. clock difference and propagation delay

for i = 1:tx_packets
delay(i) = delay(i)-delay_min;

end

% compute max. delay

del_max = 0;
for i = 1:length(delay)
       if delay(i) > del_max
                 del_max = delay(i);
       end
end

del_max
unit = 0.010;     % delay distribution step size
w = 5000;          % window size
head = 4;         % constant to detect beginning of spike
tail = 2;         % constant to detect the end of spike
mode = 1;         % normal mode

V = [0.0005 0.0005 0.001 0.003 0.005 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03
0.05 0.05];

x = 1;
q = 1;

while (q >= 0.80)
q       % percentile of delay distribution

for i = 1:ceil(del_max/unit)   % initialize delay distr. vector to zero
        del_distr(i) = 0;
end

for i = 1:w         % initialize delay statistics vector
        del_stat(i) = delay(i);
        pl_delay(i) = 0;
end

for i = 1:w         % initialize delay distr. vector
        if del_stat(i) == 0
                  del_stat(i) = 0.001;
        end
        del_distr(ceil(del_stat(i)/unit)) = del_distr(ceil(del_stat(i)/unit)) + 1;
end

%plot(del_distr)

count = 0; curr_ind = 0;

while (count < w*q)       % initialize index to delay distr. vector
       count = count + del_distr(curr_ind + 1);
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       curr_ind = curr_ind +1;
end

old_d = delay(w); spikes = 0;

for i = w:(length(delay)-1)

        if (mode == 2)
                if (delay(i+1) <= tail*old_d) % the end of spike
                          mode = 1;
                end
        else
                if (delay(i+1) > head*curr_ind*unit) % the beginning of spike
                          mode = 2;
                          old_d = curr_ind*unit;
                          spikes = spikes + 1;
                else

                     if (ceil(del_stat(rem(i,w)+1)/unit) <= curr_ind) % if delay inside distr.,
subtract from count
                          count = count-1;
                     end

                     % remove delay value that falls outside window

                     del_distr(ceil(del_stat(rem(i,w)+1)/unit)) =
del_distr(ceil(del_stat(rem(i,w)+1)/unit))-1;

                     if delay(i+1) == 0
                          delay(i+1) = 0.001;
                     end

             del_stat(rem(i,w)+1) = delay(i+1);

                     % add new delay value to distribution

                     del_distr(ceil(del_stat(rem(i,w)+1)/unit)) =
del_distr(ceil(del_stat(rem(i,w)+1)/unit))+1;

                     if (ceil(del_stat(rem(i,w)+1)/unit) <= curr_ind)
                          count = count+1;
                     end

                     % count new index

                     while (count > w*q)
                          count = count-del_distr(curr_ind);
                          curr_ind = curr_ind-1;
                     end

                     while (count < w*q)
                          curr_ind = curr_ind+1;
                          count = count+del_distr(curr_ind);
                     end

                end
        end

        % compute playout delay
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        if (mode == 2)
                 pl_delay(i+1) = delay(i+1);
        else
                 pl_delay(i+1) = curr_ind*unit;
        end
end

%plot(pl_delay)
spikes

k = w; collisions = 0; pl_del = pl_delay(w+1);

% playout delay must be constant during a talkspurt

while (k < tx_packets)
        if (sent_packets(k,2) == 1)        % check that talkspurts do not overlap

if ( (sent_packets(k,1) + pl_delay(k)) < (sent_packets(k-1,1) + pl_delay(k-1)
+ 0.02) )
                           collisions = collisions + 1;
                           pl_delay(k) = sent_packets(k-1,1)+pl_delay(k-1)+0.02-sent_packets(k,1);
                end
                pl_del = pl_delay(k);
                k = k+1;
        end
        while (sent_packets(k,2) == 0)
                pl_delay(k) = pl_del;
                if (k == tx_packets)
                         break;
                else
                         k = k+1;
                end
        end
end

collisions

%plot(pl_delay)

late = 0;

% count late arrived packets

for i = (w+1):tx_packets
        if ( rx_ts(i) > ( sent_packets(i,1) + delay_min + pl_delay(i) ) )
                  late = late + 1;
        end
end

% compute packet loss rate

loss = (late/(tx_packets-w))*100

% compute average playout delay

sum = 0;
for i = (w+1):tx_packets
        sum = sum + pl_delay(i);
end



130

delay_mean = sum/(tx_packets-w)

res(x,1) = loss;
res(x,2) = delay_mean;
res(x,3) = spikes;
res(x,4) = collisions;

q = q - V(x);
x = x+1;
end

save t1a3_5k res -ascii;
plot(res(:,1),res(:,2))
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APPENDIX 9:

Matlab implementation of algorithm 4

load rx2 -ascii;               % received headers
rx_ts = rx2(:,1);        % timestamps of received packets
rx_packets = size(rx_ts)       % number of packets received

load tx2 -ascii;               % transmitted headers
tx_sd = tx2(:,2);        % silence detector values
tx_ts = tx2(:,1);        % timestamps of sent packets

tx_packets = 0;
for j = 1:size(tx_sd)          % count nr. of transmitted packets

if tx_sd(j)==1         % part of talkspurt if=1
        tx_packets = tx_packets+1;
     end
end

tx_packets % if tx_packets=rx_packets, no packets lost in network

j = 1; k = 1; l = tx_packets;

% compute 2-dim. matrix from transmitted packets
% 1.col=timestamp, 2.col indicates beginning of talkspurt

while (l > 0)
while (tx_sd(j) ~= 1)  

                 j = j+1;    % find beginning of talkspurt
end

                          % compensate clock skew
        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
        sent_packets(k,2) = 1; % mark beg. of talkspurt with 1
        j = j+2;
        k = k+1;
        l = l-1;

        while (tx_sd(j) ~= 0)
                j = j+1;
                if (tx_sd(j) == 1)
                        sent_packets(k,1) = tx_ts(j-1)+0.0000013*(j-1);
                        sent_packets(k,2) = 0; % mark rest of talkspurt with 0
                        k = k+1;
                        l = l-1;
                end
        end
end

% compute delay vector

for i = 1:tx_packets
        delay(i) = rx_ts(i) - sent_packets(i,1);
end

% calculate minimum delay

delay_min = delay(1);
for i = 2:tx_packets

if (delay(i) < delay_min)



132

delay_min = delay(i);
end

end

delay_min

% subtract min. delay i.e. clock difference and propagation delay

for i = 1:tx_packets
delay(i) = delay(i)-delay_min;

end

% compute max. delay

del_max = 0;
for i = 1:length(delay)
       if delay(i) > del_max
                 del_max = delay(i);
       end
end

del_max
unit = 0.010;     % delay distribution step size
w = 5000;         % window size
head = 4;         % constant to detect beginning of spike
tail = 2;         % constant to detect the end of spike
mode = 1;         % normal mode

V = [0.0005 0.0005 0.001 0.003 0.005 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03
0.05 0.05];
W = [0.5 0.5 0.25 0.5 1 1.25 1.25 1 1 0.75 0.75 0.5 0.5 0.25 0.1 0.1];

x = 1;
q = 1;
beta = 10.5;

while (q >= 0.80)
q       % percentile of delay distribution
beta

for i = 1:ceil(del_max/unit)   % initialize delay distr. vector to zero
        del_distr(i) = 0;
end

for i = 1:w         % initialize delay statistics vector
        del_stat(i) = delay(i);
        pl_delay(i) = 0;
end

for i = 1:w         % initialize delay distr. vector
        if del_stat(i) == 0
                  del_stat(i) = 0.001;
        end
        del_distr(ceil(del_stat(i)/unit)) = del_distr(ceil(del_stat(i)/unit)) + 1;
end

%plot(del_distr)

count = 0; curr_ind = 0;
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while (count < w*q)       % initialize index to delay distr. vector
       count = count + del_distr(curr_ind + 1);
       curr_ind = curr_ind +1;
end

% calculate playout delays

alpha = 0.998002;
delay_k = delay(1);
var_k = abs(delay(2)-delay(1));
pl_delay(1) = delay_k+beta*var_k;
old_d = delay(1); spikes = 0;

for i = 1:(length(delay)-1)

        if (mode == 2)
                if (delay(i+1) <= tail*old_d) % the end of spike
                     mode = 1;
                end
        else
                if (delay(i+1) > head*curr_ind*unit) % the beginning of spike
                     mode = 2;
                     old_d = curr_ind*unit;
                     spikes = spikes + 1;
                else

                     if (i<w)
                          delay_k_minus1 = delay_k;
                          delay_k = alpha * delay_k_minus1 + (1-alpha) * delay(i+1);
                          var_k_minus1 = var_k;
                          var_k = alpha * var_k_minus1 + (1-alpha) * ( abs(delay_k_minus1-
delay(i+1)) );
                     else

                          if (ceil(del_stat(rem(i,w)+1)/unit) <= curr_ind) % if delay inside distr.,
subtract from count
                               count = count-1;
                          end

                          % remove delay value that falls outside window

                          del_distr(ceil(del_stat(rem(i,w)+1)/unit)) =
del_distr(ceil(del_stat(rem(i,w)+1)/unit))-1;

                          if delay(i+1) == 0
                               delay(i+1) = 0.001;
                          end

                  del_stat(rem(i,w)+1) = delay(i+1);

                          % add new delay value to distribution

                          del_distr(ceil(del_stat(rem(i,w)+1)/unit)) =
del_distr(ceil(del_stat(rem(i,w)+1)/unit))+1;

                          if (ceil(del_stat(rem(i,w)+1)/unit) <= curr_ind)
                               count = count+1;
                          end

                          % count new index
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                          while (count > w*q)
                               count = count-del_distr(curr_ind);
                               curr_ind = curr_ind-1;
                          end

                          while (count < w*q)
                               curr_ind = curr_ind+1;
                               count = count+del_distr(curr_ind);
                          end

                     end
                end
        end

        % compute playout delay

        if (mode == 2)
             pl_delay(i+1) = delay(i+1);
        else
             if (i<w)
                  pl_delay(i+1) = delay_k + beta * var_k;
             else
                  pl_delay(i+1) = curr_ind*unit;
             end
        end
end

%plot(pl_delay)
spikes

k = 2; collisions = 0; pl_del = pl_delay(1);

% playout delay must be constant during a talkspurt

while (k < tx_packets)
        if (sent_packets(k,2) == 1)        % check that talkspurts do not overlap

if ( (sent_packets(k,1) + pl_delay(k)) < (sent_packets(k-1,1) + pl_delay(k-1)
+ 0.02) )
                           collisions = collisions + 1;
                           pl_delay(k) = sent_packets(k-1,1)+pl_delay(k-1)+0.02-sent_packets(k,1);
                end
                pl_del = pl_delay(k);
                k = k+1;
        end
        while (sent_packets(k,2) == 0)
                pl_delay(k) = pl_del;
                if (k == tx_packets)
                         break;
                else
                         k = k+1;
                end
        end
end

collisions

%plot(pl_delay)

late = 0;
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% count late arrived packets

for i = 1:tx_packets
        if ( rx_ts(i) > ( sent_packets(i,1) + delay_min + pl_delay(i) ) )
                  late = late + 1;
        end
end

% compute packet loss rate

loss = (late/tx_packets)*100

% compute average playout delay

sum = 0;
for i = 1:tx_packets
        sum = sum + pl_delay(i);
end

delay_mean = sum/tx_packets

res(x,1) = loss;
res(x,2) = delay_mean;
res(x,3) = spikes;
res(x,4) = collisions;

q = q - V(x);
beta = beta - W(x);
x = x+1;
end

save t2a4 res -ascii;
plot(res(:,1),res(:,2))
set(gca,'XScale','log');


