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An implementation of the  Server Cache Synchronisation Protocol (SCSP) is presented in this
document. Initially, the SCSP algorithm establishes the data synchronisation among a set of
server entities of a particular protocol which are bound to a Server Group (SG). After that it
maintains an actively mirroring state of any change in every cache information that form the
SG.

The program is based on an object-oriented software environment. This leads to a modular
implementation. Different processes take place between each “Local Server” (LS) and its
“Direct Connected Server” (DCS).

The protocol code (which is written in C++) facilitates an easy translation to new
communication architectures and services in a rapidly changing scenario. In that way the
platform-dependence was minimised using one of the most extended programming languages
namely C++, combined with the software functions provided by “Free Software Foundation,
GNU”. Probably, the GNU package compiles on more operating systems than the actual
machine independent languages. UNIX, is the operating system chosen for the software
development. UNIX provides enough speed to the protocol performance in those situations
where the data replication is important for the system which is using the SCSP.

The basic structures used by the program were developed following the Management
Information Base (MIB) specifications. The purpose is to permit later interactions with an
SNMP agent, which checks the correct functioning of the protocol.

The most important application of this software package is focused in the IP Telephony and
the new emerging directory services. For those services it is necessary to manage large
amounts of information that is stored in distributed databases that need to be efficiently
updated and replicated.

Having described the implementation of the software, the work ends with a discussion of
future applications. In those applications the SCSP can be used to solve the problem of the
data replication in distributed protocol entities. In the results chapter we show the tests done
to check that the program works properly among different workstations in the Laboratory.
The main difficulty in the software development was handling all the different data and
interfaces which were involved in the program. The problem was solved in modular
structures and independent functions that were tested gradually in stand alone functioning.
Thus the final purpose was reached, and the complexity could be managed.
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Chapter 1

Introduction

1.1    About this Thesis

This thesis is about the implementation of a software tool, developed for database
synchronisation and replication. In the implementation we have followed the protocol
specifications from the Internet protocol for the Internet Community, titled “Server Cache
Synchronisation Protocol ” (SCSP) [1].

The synchronisation is performed by a group of distributed protocol entities which
compound a Server group (SG). The purpose of this software is to achieve a complete
synchronisation of the data stored in any server of the SG. When the synchronisation is
reached, the secondary objective is to update immediately every new information that has
changed in the data stored in each server.

1.2    Structure of the thesis

The approach taken in this software project is to start with a basic introduction to the
database systems. Thus in the second chapter, we describe the database systems and the
different Internet models for their implementation. Afterwards, we show an introduction to
some existing databases and the mechanism for information management. In those databases
we can fit the SCSP as a solution for their synchronisation/replication. In this chapter we
also review some exiting protocols with similar algorithms, to compare with the
characteristics of the SCSP.

In the third chapter we explain the framework for the implementation. We describe the basis
of the SCSP algorithm which is borrowed from the OSPF. Furthermore, in this chapter we
clarify the mechanism used by the SCSP to solve the synchronisation problem. Afterwards
we review the different steps of the protocol defined in the specifications RFC 2334 [1].

The fourth chapter shows the characteristics of the implementation and we argue the reasons
for the choice of a specific language for its development. In this chapter we analyse the
interactions between the program and the Operating System (OS). We introduce the
facilities provided by the OS for the programming task. In addition, we describe the
different steps followed in the program development.

In the fifth chapter we describe the basic implementation and the functional modules needed
for the main structures. All the pieces that the SCSP requires for its development are
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defined. In this chapter, we expose the internal specifications of the data structures which
have to follow the SMI definitions.

In the sixth chapter, we present the interface module. In fact it is an independent program
with the purpose of displaying the protocol state in every moment. This interface is a
graphical module based on X-windows programming. To avoid interfering with the normal
functions of the SCSP, this module acts without any direct interaction with the main
program. The information that the interface requires is read through an information file
which is filled by the main program.

The seventh chapter, shows the results of the final implementation. In this chapter we depict
the global flow diagram and the results obtained.

Finally, in the eight chapter we describe the conclusions and future work. The
characteristics of the SCSP are described as a useful facility for other protocols. Likewise,
we show the features provided by the SCSP for future requirements in other protocols for
their data replication.

1.3    Goals of the Thesis

The main goal of the thesis is to obtain a powerful tool for the database synchronisation and
replication among different hosts, servers or distributed entities.

The second goal is a machine independent implementation that nevertheless is efficient.
Thus there is a compromise between speed and platform-independence in obtaining an
efficient and portable software program.

To achieve the first objective, we follow the SCSP RFC 2334  [1] for server cache
synchronisation in distributed protocol entities. The specifications defines the algorithm to
reach the data replication in a group of servers. That algorithm is borrowed from the well-
known OSPF protocol. Behind the OSPF protocol are accumulated many years of
experience and efficient work over IP networks. Hence we can assure that indeed the SCSP
is based on a robust design. Thus by following the SCSP specifications, we will obtain an
effective means for data replication in the SG.

The second purpose, to achieve a fast and platform-independent program is quite
complicated. This implementation requires a considerable effort in writing functions based
on separate modules. A design goal is that for the purpose of translating the program to
another architecture we only have to change one of the basic modules. Hence, we can
maintain intact the algorithm which is placed on an upper layer in the global skeleton.
Therefore, we use an object-oriented programming environment which helps in modular
implementation for each of the different parts in the whole protocol. The program is based
on class definitions which also provide several features that make it suitable to maintain
independent synchronisation processes among the LS and it associated DCS without wasting
the system resources.

Following those two blueprints we target an efficient implementation of the SCSP protocol
for the data synchronization. The goal is that different servers can use the SCSP features for
data replication. Those servers can form already a Server Group or they can be part of
independent Groups that desire to share the information in a common agreement. A real
example could be the servers which are maintaining the databases of different ISPs that
desire to share data in a common agreement, or the servers of an independent ISP which
wants to synchronize its own information.



3

Chapter 2

Distributed databases

In this chapter, we review the database the different models and some existing examples
already implemented. We will illustrate briefly the basic characteristics of each model and
some details of the information management used by them. Finally, we will point out the
specific problems of the data replication in each case and we will show how the SCSP can
fit in the replication problem.

2.1   Introduction to Databases

The database technology is one of the most rapidly growing areas of computer information
science. The total amount of data now committed to database can be measured,
conservatively in terabytes.
What is a database system? Basically, it is nothing more than a computer-based record-
keeping system [2]. Those records can store many types of data, from the personal
information of one employer in a company, till the important data obtained from a routing
algorithm for better performance in network management. The right behaviour of actual
Intelligent networks are based on data stored in database records. Many new services in the
networks require the management of large amounts of data.

Thus a database is a repository for stored data which is both integrated and shared.
“Integrated” means that the database may be thought of as a unification of several otherwise
distinct data files, with any redundancy among those files partially or wholly eliminated.
And by “shared” we mean that individual pieces of data in the database may be shared
among several different users, in the sense that each of those users may have access to the
same piece of data (and may use it for different purposes) [2].

Between the physical database itself and the users of the system is a layer of software,
usually called the database management system or DBMS. All requests from users for
access to the database are handled by the DBMS. One general function provided by the
DBMS is thus the shielding of database users from hardware-level detail. Other elements in
the database system are the data definition language (DDL), which provides the definition or
description of the database objects, and a database manipulation language (DML), which
supports the manipulation or processing of such objects.

Another important element is the database administrator DBA. This element has the
freedom to change the storage structure or access strategy (or both). The DBA ’s job is to
decide exactly what information is to be held in the database. The DBA must also decide
how the data is to be represented in the database, and must specify the representation by
writing the storage structure definition using the DDL. The business of the DBA is also to
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liaise with users, to ensure that the data they require is available, and to write the necessary
external schemas, using the appropriate external DDL.

It is clear that the DBA will require a number of utility programs to help with these tasks.
Such utilities would be an essential part of a practical database system. Thus the SCSP could
be considered one of those complementary tools for the data management, which could be
thought of as a special system-supplied application.

2.2    Database models
A database can be based on centralised or distributed control.

❑ In the former model, the DBA has the central responsibility for the operational data. The
advantages that accrue from the centralised control of the data  are:

Redundancy can be reduced. In many systems each application has its own private
files. This can often lead to considerable redundancy in stored data, with the
resultant waste in storage space.

Inconsistency can be avoided. Inconsistency can take place when two entries
contain the same data and the system is not aware of this duplication. The problem
appears when one of the entries change some information and the other has not been
updated. Then the database is in an inconsistent state, and obviously is capable of
supplying incorrect or conflicting information.

Standards can be enforced. With the central control of the database, the DBA can
ensure that all applicable standards are followed in the representation of the data.
Standardising stored data formats is particularly desirable as an aid to data
interchange or migration between systems.

❑ In the latter model, the Distributed database technology is a comparatively recent
development within the overall database field. The database is not stored in its entirety at a
single physical location, but rather is spread across a network of computers that are
geographically dispersed and connected via communications links. The data is stored at the
location at which it is most frequently used, but is still available, via the communications
network, to users at other locations.

The advantages of such a distribution are:
Efficiency of local processing. This refers to the fact of local operations without
communications overhead. And all the advantages discussed above, in particular
data sharing, provided by a centralised system.

But there are disadvantages too:
Communications overhead. It could be high enough, and also there are significant
technical difficulties in implementing such a system.

A key objective for a distributed system is that it should look like a centralised system to the
user. The user should not normally need to know where any given piece of data is physically
stored. Applications are independent of the manner in which the data is distributed, making
it possible to change the distribution without affecting those applications. Thus the fact that
the database is distributed should be relevant only at the internal level, not at the external
level.
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2.3    Database Examples

This thesis is focused on providing a new facility for the emerging services on IP networks.
We have tried to avoid reinventing the wheel. Instead, we have put our best effort in the
implementation of an efficient software package based on an existent algorithm well tested
during many years, which is the OSPF protocol. Thus, with the implementation of the SCSP
protocol, we try to introduce a new tool to manage the information that actually is available
on the Internet.
It seems clear that with the vast amount of directory information potentially available on the
Internet, it is simply not feasible to build a centralised directory to serve all the information.
If we have to distribute the directory service, the easiest (although not necessarily the best)
way of building the directory service is to build a hierarchy of directory information
collection agents. In this architecture, a directory query is delivered to a certain agent in the
tree, and then handed up or down, as appropriate, so that the query is delivered to the agent
which holds the information which fills the query. This approach has been tried before, most
notably in some implementations of the X.500 standard [3].

2.3.1    X.500 Directory

X.500 is the collective name given to a series of standards produced by the ISO/ITU-T
defining the protocols and information model for a global directory service that is
independent of the computing applications and the network platform. First released in 1988,
the X.500 standards define a specification for a rich, global, distributed directory based on
hierarchically named information objects that users can browse and search using arbitrary
fields [4]. X.500 uses a model of a set of directory servers (DSAs), each holding a portion of
a global directory information base. These co-operate to provide a directory service to users
or user applications in a way that means these user applications need not be aware of the
location of the information they are accessing i.e., the user applications can connect to any
directory server and issue queries to access information anywhere in the global directory [5].

Elements of the X.500 are:

¾DAP is the Directory Access Protocol defined by ISO/ITU-T as part of the X.500
directory standards. It provides a comprehensive open system protocol for accessing
standardised directory servers. The ASN.1 is used in describing the data. DAP (and
the other X.500 protocols) can run over Internet Protocols( e.g. TCP/IP).

¾DIT Directory Information Tree defines the hierarchical naming model which is
used to define a single global name space. The directory information is represented
in entries (the standard describes the schema to define, for example, object classes
and attributes), how entries are organised and named, how information within
entries is protected from unauthorised access. The DIT is collectively managed,
through splitting into management domains.

¾DSP Directory Servers Protocol, is the protocol needed to chain user requests
between directory servers. The DSP also manage the knowledge information needed
to accomplish the connection between servers.

¾DUA Directory User Agent, is the part of the standard which specifies the access
to the directory from the user point of view. It passes the queries from the user
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directly to the directory servers, and receives back their answers which will be
forwarded to the user.

¾DSA Directory Server Agent, is the part of the specifications which defines the
attributes of the application that will manage each node in the DIT. The DSA has to
connect with the rest of DSAs to form a global directory accessible from
everywhere. Transparent to users, X.500 directory servers can pass and resolve
queries between themselves, in addition to passing referrals back to the user agent.

¾DISP Directory Information Shadowing Protocol provides a fully comprehensive
replication model. DISP ensures consistency of knowledge and access control
between replicated systems. Thus DISP is the protocol needed to replicate selected
information between servers in a managed way such that for example access control
is preserved and the information doesn't become stale. The specifications are written
in X.525 [6].

An example of the application of the X.500 standards could be the implementation of a
global directory service. This directory could be distributed world-wide and in each country
a different DSA would manage its portion of the whole directory.
In this X.500 application, the country-level DSAs form the access path for the rest of the
world to access directory entries associated with that country's organisations. Thus, the
availability and performance of the country-level DSAs give an upper bound to the quality
of service of the whole country's part of the Directory.

Country DIT information, including naming infrastructure information such as localities and
states, should be replicated across the oceans - not only to serve when the transoceanic links
go down, but also to handle name resolution operations for clients in other countries.  There
should be a complete copy of the US root in Europe and a copy of the Japanese root in
Africa and North America, for instance. Generally, data should be replicated wherever it is
heavily used, and where it will be needed in the event of a network partition.

The main objections raised against X.500 are:
It is too complex and over-engineered, maybe because it is an OSI standard and
therefore too resource intensive. Another inconvenience is that the actual X.500
products are not mature and easy-to-use.

One of the Internet arguments against the OSI standardisation process is that it takes far too
long to ratify required changes.

A recent version of X.500 - the 1997 edition - is about to be adopted as an international
standard. This introduces yet more key features, such as a standard way of remotely
managing directory system components, adding internationalisation into the directory model
so that multiple languages and character sets can be supported, and further strengthening the
use of X.500 as a repository for security-related information through defining encrypted
attributes, signed attributes, and an encryption mechanism for protocol sessions.
This version may be a good option for a global directory implementation.
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2.3.2    LDAP model

The Lightweight Directory Access Protocol (LDAP) [7] has become a new standard way to
access directory services. LDAP is defined by the Internet community. The protocol
provides a mechanism for passing text-based queries from an LDAP client to an LDAP
server over the TCP/IP network protocol. The query language used, maps very closely to
DAP. The aim is to let users quickly and easily create and query directories of people and
information for example user names, email address, and telephone numbers. LDAP was
proposed when a full OSI solution like DAP would not fit on the desktop technology
available at the time. Nowadays, with the actual high technology available, the LDAP is far
more widely used than DAP for access to directories. The main reason is that, the X.500
DAP protocol is seen as being complex, and hard to implement. LDAP offers a simpler
model that fits more closely with the ideals of the Internet protocol suite.

The primary goal of LDAP is to minimise the complexity of the client so as to facilitate
widespread deployment of applications capable of utilising directory services. The LDAP
protocol is "designed to provide access to directories supporting the X.500 models, while
not incurring the resource requirements of the X.500 Directory Access Protocol (DAP). This
protocol is specifically targeted at management applications and browser applications that
provide read/write interactive access to directories" [7].

LDAP is a protocol allowing users to access a directory. However, LDAP does not specify
how the directory service itself operates. Hence the drawback is that key service aspects
such as controlling access to the data, and facilities for replicating the data (for redundancy
and performance) are not included in the LDAP specification. Any operational directory
system needs to provide these components.

Actually, most of the vendors providing LDAP-based services have their own mechanisms
for providing a directory model, access controls and replication. Many of these will be
similar to X.500, but not compliant with the standard and may not be interoperable with
products from other vendors, although it can be expected that interworking fora involving
the major vendors will address many of these problems.

In X.500, these key services are fully defined, ensuring full co-operation between differing
directory service implementations. And as we have seen in the above paragraph X.500
defines the DISP, which provides a full replication model.

As an example to solve that problem, the Michigan software, implements LDAP v2 [8],
which includes a replication server (slurpd) [9]. This replication server is one specific
implementation, it does not follow any standard and has not been widely-adopted.
These replication processes exchange data in a flat file format referred to as the
"Lightweight Directory Interchange Format" (LDIF)¨ [10]. This has been put forward as a
possible basis for an Internet standard exchange format, although it does only support full
duplication of data and not selective, managed replication It is one of the main differences
between X.500 and LDAP. DISP is using the ASN.1 notation [10], [11] for coding all the
messages with the consequent overhead and complexity to form the packets. Instead of that
the LDAP uses LDIF, for LDAP Data Interchange Format which is typically used to import
and export directory information between LDAP-based directory servers, or to describe a set
of changes which are to be applied to a directory. The LDIF is a simpler format which is
perhaps easier to create and consists of a series of records using commands based on ASCII
nomenclature and separated by line separators.
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The process of seeking agreement on replication between LDAP-based directories through
the IETF has only just begun. Several alternatives have been put forward. Currently no one
mechanism is in the standardization process or widely adopted amongst multiple vendors.

Most commercial directory vendors have adopted some mechanism for performing
replication between their own LDAP servers. Agreement on a common flexible replication
mechanism for use by LDAP servers is still some way off. Most commercial
implementations of X.500 available today support DISP. However, there are very few
examples of multi-vendor inter-working using DISP. One of the reasons for this is that there
are options in the standard which require any two implementations of X.500 to adopt the
same configuration in order to be able to use DISP successfully. As a result from a user
perspective, this is not an off-the-shelf process, and there is no guarantee that a replication
agreement will reflect the original replication requirement.

2.3.3    WHOIS

The WHOIS is a service used as a very limited directory service. The current NIC WHOIS
[12] system serves information about a small number of Internet users registered with the
DDN NIC. The WHOIS NIC database consists of a series of individual records, each of
which is identified by a single unique identifier (“handle”). Each record contains one or
more lines of information. Over time the basic service has been expanded to provide
additional information and similar services have also been set up on other hosts.
Unfortunately, these additions and extensions have been done in an uncoordinated manner.
Despite its utility, the current NIC WHOIS service cannot function as a general White Pages
service for the entire Internet. Given the inability of a single server to offer guaranteed
response or reliability, the huge volume of traffic that a full scaled directory service will
generate and the potentially huge number of users of such a service, a trivial architecture is
obviously unsuitable for the current needs for information services.

WHOIS++

Hence, in view of high utility of this service, a new architecture has been developed.
WHOIS++ is a simple, distributed and extensible lookup service based upon small set of
extensions to the original WHOIS information model. These extensions allow the new
service to address the community’s needs for a simple directory service, yet the extensible
architecture is expected also to allow it to find application in a number of other information
service areas.
These added features include an extension to the trivial WHOIS data model and query
protocol and a distributed indexing service. The basic architecture of WHOIS++ allows
distributed maintenance of the directory contents and the use of the WHOIS++ indexing
service for locating additional WHOIS++ servers. In this way it is quite similar to the
distributed directory model described in the X.500 standards.
The WHOIS++ server functions as a known front end, offering a simple data model and
communicating through a well known port and query protocol. It is also proposed that
individual database handles can be registered through the Internet Assigned Numbers
Authority (IANA), ensuring their uniqueness. A WHOIS++ database may be seen as a single
collection of typed records. And the WHOIS++ directory service has an architecture which
is separated into two components; the base level server and the indexing server. In fact a
single physical server can act as both a base level server and an indexing server. A base
level server is one which contains only filled templates. An indexing server is one which
contains forward knowledge and pointers to other indexing servers or base level servers.
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Thus, the WHOIS++ directory service is intended to provide a simple, extensible directory
service based on a template-based information model and a flexible query language. In this
system, its general architecture has been designed for use indexes or resumes of the
distributed database reducing the traffic and consequently the packets latency. The
architecture can be applied to link together many of these WHOIS++ servers into a
distributed, “searchable” wide area directory service. In this way WHOIS++ provides a
distributed directory service which is also searchable. To have an efficient way to reach as
quickly as possible the information allocated in the directory, it is essential to have an
efficient indexing server . In this Index server whenever we issue a global query (at the root
of the name-space), or a query at the top of a given sub-tree in the name-space, that query is
replicated to “all” sub-trees of the starting point. However, every server to which the query
has been replicated must process that query, even if it has no entries which match the
specified criteria. This mechanism by which information servers can exchange indices of
information from their database can make use also of the Common Indexing Protocol(CIP).

CIP Architecture

It is assumed that the structures defined in the CIP architecture can be used by X.500 DSAs,
LDAP servers, WHOIS++ servers and many others.

CIP [13] proposes a mechanism for distributing searches across several instances of a single
type of search engine with a view to creating a global directory. CIP provides a scaleable,
flexible scheme to tie an individual database into a distributed warehouse that can scale
gracefully with the growth of the Internet. CIP provides a mechanism for meeting these
goals that is independent of the access method that is used to access the data that underlies
the indices. Separate from CIP is the definition of the Index Object that is used to contain
the information that is exchanged among Index Servers. For information servers that contain
millions of records in their database, constant exchange of complete dredges of the database
is bandwidth intensive. To avoid that problem, the tagged Index Object is specifically
designed to support the exchange index of update information. In the case of WHOIS++, an
index server will take a query in standard WHOIS++ format, search its collections of index
and other forward information, determine which servers hold records which may fill that
query, and then notify the user’s client of the next servers to contact to submit the query.
Thus the exchange of those index among servers allows hints to be given as to which
information server actually contains the information. The tagged Index Object labels, the
various pieces of information with identifiers that tie the individual object attributes back to
an object as a whole. This “tagging” of information allows an index server to be more
capable of directing a specific query to the appropriate information server. Again, this
feature is added to the Tagged Index Object at the expense of an increase in the size of the
index object.

CIP background

The background of the CIP specifications is based in the LDAP, and it defines a mechanism
for accessing a collection of information arranged hierarchically in such a manner as to
provide a globally distributed database which is normally a DIT. A distinguished
characteristic of an LDAP server is that it is expected to respond to requests that pertain to
portions of the DIT for which they have data, as well as for those portions for which they
have no information in their database. Normally, the response given will be a referral to
another LDAP server that is expected to have more knowledge about the appropriate sub-
tree. Typically, an LDAP server is configured with the name of exactly one other LDAP
server to which all LDAP clients are referred when their requests fall outside the sub-tree of
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the DIT for which that LDAP server has knowledge. Based on the LDAP server mechanism
for data management, the CIP specification go further and defines a new mechanism
whereby LDAP server can exchange index information that will allow referrals to point
towards a clearly accurate destination.
In addition, the X.500 series of recommendations defines the DISP which allows X.500
DSAs to exchange actual information in the DIT. Shadowing allows various information
from various portions of the DIT to be replicated amongst participating DSAs. The design
point of CIP and the Tagged Index Object is more appropriate for the exchange of index
information than is DISP.

DISP is more targeted at DIT distribution and fault tolerance. DISP is thus more appropriate
for the exchange of the actual data in order to spread the load amongst several information
servers. DISP is tailored specifically to X.500 (and other hierarchical directory systems),
while the Tagged Index Object and CIP can be used in a wide variety of information about
large parts of the DIT, it would require a huge database to collect all of the replicas for a
meaningful portion of the DIT. Furthermore, as X.525 states: Before shadowing can occur,
an agreement, covering the conditions under which shadowing may occur is required.
Although such agreements may be established in a variety of ways, such as policy
statements covering all DSAs within a given Directory Management Domain DMD. This is
due to the case that the actual data in the DIT is being exchanged amongst DSA rather than
only the information required to maintain an Index. In many environments such an
agreement is not appropriate, and in order to collect information for a meaningful portion of
the DIT, a large number of agreements may need to be arranged.
All of these requests or data transactions can reasonably be translated into LDAP or
WHOIS++, and other directory access protocol queries. They can also be serviced in a
straightforward manner by the users home information server if it has the appropriate
reference information into the database that contains the source data. In this situation, the
first server would be able to “chain” the request on behalf of the user. Alternatively, a
precise referral could be returned. If the home information server wants to service the
request based on the index information that it has on hand, this servicing could be done by
any number of means.
Finally, when a collection of Information Servers are operating against a large distributed
directory, is more efficient to allow them to distributed index information amongst
themselves. For that purpose, they can male use of the CIP features and in this way their
own searches can be carried out with some degree of efficiency. But before a Tagged Index
Object can be exchanged, the organisation which administers the object consumer must
reach an agreement on how the servers will communicate.
In the CIP, there is also a mechanism to indicate that there is some information which must
be updated. This system is achieved with data composition which has an attribute value that
may only be empty in the case of an incremental update that contains a “Update Block” in
which the index object indicates that certain attributes of objects are being removed. The
intention of the Tagged Index Object is to supply a snapshot of the current index of the
directory. The information Server administrators must decide what portions of their database
are appropriate for inclusion in the Tagged Index Object.

2.4    Integrated Directory Services

The Integrated Directory Services (IDS) [14]Working Group is chartered to facilitate the
integration and interoperability of current and future directories into a unified Internet
directory service. This work will unite directories based on a heterogeneous set of directory
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services protocols (X.500, LDAP, WHOIS++, etc.). The problem in achieving this purpose
is that there are many solutions and different vendors are adopting their own solutions.
One of the lessons that  can be learned from observing many directory environments is that
there is a simple, common problem - too many directories - and many technical and political
ramifications in resolving the ensuing mess.

Trying to clarify the different solutions to reach the objective of an IDS, we can depict the
advantages and drawbacks of the different models that we have seen above, and the possible
solutions:

❑ The X.500 information model uses the concept of a single virtual directory embracing all
the countries of the world. This is one of the most powerful aspects of X.500, the ability to
distribute data and the management of knowledge across thousands, possibly millions, of
directory servers world-wide, thereby creating a logical database of billions of entries
X.500 provides a viable distributed solution for IDS on the Internet and the only one
demonstrated so far. It is the only open set of standards that define protocols, replication,
security and an information model. Hence, the X.500 standards provide a solid, proven
blueprint for a global distributed directory.
The drawback of the X.500 solution seems to be that it is too complex to be adopted in an IP
environment.

❑ The alternative could be a LDAP based solution. While X.500-based directories provide a
mechanism for managing global interconnected directories, LDAP-based directories only
assume the existence of a directory model. LDAP provides simple access and manipulation
of a directory. Some of the lightness of LDAP is achieved by removing rarely used but
useful features of X.500. Putting the useful features back into LDAP will mean relaxing this
lightness requirement, but at least would make the LDAP more suitable for our purpose.

Nowadays, the vendors are trying to find out the best solution adopting the best
characteristic of each model. Actually, there is an intermediary process - a protocol
converter - called an LDAP server, that gateways LDAP into full DAP has been proposed.
But Increasingly X.500 vendors also implement LDAP directly into their X.500 server, thus
eliminating the intermediary process. The recent implementations of standalone LDAP
servers (known as slapds) talk to a directory database directly. But otherwise slapds are not
incorporated into a distributed directory service and are “islands of data”.
There are other vendor announcements about LDAP access to their own database servers.
This approach suffers from the same problem: each of these LDAP-enabled database servers
are in most cases cut off from the other vendors' LDAP directory servers. They become (or
remain) database islands. This approach does not provide a (transparent) multi-vendor
distributed directory solution although access to multiple LDAP directories can be achieved
through manual configuration.

An alternative solution is the model called distributed LDAP. In this case LDAP servers
return referrals to other LDAP-servers. However there still remain several open questions
about this approach. For instance, where do the distributed LDAP-servers get this
information from, and far more importantly how is it dynamically maintained?.
Many of the standalone servers will "borrow" ideas and concepts from X.500, but not adopt
them in such a way as to provide compliance with the X.500 standards. Hence it appears at
the moment that, over the next few years numerous heterogeneous directory systems will be
available with a varying degree of conformity to X.500.
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Definitely, much of the value of open standards is in providing interoperability. If LDAP-
enabled directory servers become islands of data that cannot be easily consolidated and
managed, the ideal of IDS can not be achieved.

❑ Another suggestion is that X.500 could be extended for use as a backbone in a distributed
LDAP world, using its knowledge management model to identify the appropriate server
whether this can be an X.500 or LDAP server. The role of X.500 in most corporations
deploying X.500-based solutions is to provide the backbone infrastructure either as a
standalone system or with multiple servers replicating with each other.

Definitely, LDAP servers solutions that do not also implement X.500 are unlikely to
improve multi-vendor server-to-server connectivity or replication in the short term, and a
viable co-operation between the two types of directory servers needs to be established.

❑ Other techniques suggest including the proposed Common Indexing Protocol, that was
already mentioned in the WHOIS++ system, to build the meta-directory. However, this is
still at a conceptual stage and has not yet been practically proven.

2.5    The SCSP in this context

In the previous section, we have reviewed some actual database solutions and different
models for data storage. We have also described the main purpose that is the system to
achieve a global directory in IP networks. In those models we have seen that the X.500
standard itself provides the data replication in the X.525 specification. X.525 defines the
DISP protocol for the data updating between servers. The problem that we have found in the
X.500 directories is that is too heavy to manage using the DAP for the access to the
information stored in the DIT.
The solution seems to be the LDAP protocol but we have also shown that if it acts as a
standalone protocol it forms “islands of data”. A solution for that problem could be to fit the
SCSP as the mechanism for the LDAP servers synchronisation. Thus SCSP could be the
simple and popular way of providing this service to standalone LDAP or other kind of
servers. In this way, those servers can offer for the first time a common facility amongst
heterogeneous directory servers, combining a simple access protocol, the LDAP, with a
simpler backbone than the X.500.
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Chapter 3

Protocol Standard Specifications

In the previous chapters we have described the problem of data synchronisation that is the
actual weakness in many distributed database systems. Thus, with the SCSP implementation
we are trying to solve that problem. In the second chapter, we have reviewed the actual
solutions and the framework for future answers for this problem. In all the possible solutions
for information replication there are two main dilemmas, the first one is following a
standardised solution with the correspondent excess of complexity, and the other alternative
would be to adopt a simple protocol that is well accepted among the users and vendors.
Hence in this chapter we will describe the SCSP protocol as the solution for data
synchronisation/replication among distributed entities such taht it has both properties of
being standardised and without any complexity.
Thus in this chapter, firstly we will explain the objective we want to reach using SCSP that
is the implementation of a reliable mechanism to provide a temporal-inconsistency system
among replicated databases in a network.
Secondly we will look at the antecedents for the SCSP Algorithm, which is based in the
algorithm for the synchronisation of the OSPF ’s routing database.
And finally, we depict the algorithm specifications of the SCSP itself and the policies for
managing the updates of the information on each server or distributed entity.

3.1    Data Consistency among replicas

An important feature in a distributed database is the consistency, meaning that when a user
changes or modifies an entry in the database that must be reflected in all copies of the entry
carried by all replicas of the database. The inconsistency happens when two users are
accessing the same data simultaneously in different databases whether one of them change
the data and that information is not been updated immediately in the other database.
Consequently, the other user will access to incorrect information. To achieve a strong
consistency it is necessary to implement an atomic operation when a user has to change
some information in the database. During an atomic operation the changes in the attributes
of any entry contained in the database are propagated to all the replicas as a single unit.
With the strong consistency different users will access the updated data in different places
without any incoherent information. The other alternative is to provide a weak consistency
which allows a temporary inconsistency but later on after few transactions among the
distributed entities it will be fixed and a complete replication will be achieved. In the weak
consistency there is a transitory period when the databases could have different information
for the same entry, but the databases will store always the newest data because the protocol
implement many mechanisms to guarantee that the data is not corrupted or old fashioned.
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The main goal of this thesis is to achieve an efficient architecture for a software system that
provides a temporal inconsistency or weak consistency[15] among replicated databases in
Internet. There have been many other solutions before this one, but they required a strong
consistency and for that purpose they needed special channels for the communication. In this
case, we are trying to achieve a software system well designed to allow database to be
highly available and to operate reliably under difficult conditions such as unreliable
communication, network partitions, and host failures. In this system, an important objective
is that the software itself requires minimal support from the DBMS or the other protocol that
will use the SCSP. It is important also that the system performs an easy tuning of the
architecture’s basic algorithms to other particular environments.

Database replication is an important technique for constructing viable distributed systems.
The proliferation of networks and distributed applications has increased the demand for
geographically distributed replicated database. The typical database replication systems,
which were designated for local area networks, are not well suited for the new Internet
networks applications. Internet introduces new problems because it often contains high -
latency, low bandwidth links, node failures, and network partitions.

A replication system contains mechanisms for update propagation and inter-replica
consistency. The update propagation mechanisms must ensure that updates are efficiency
and reliably updated to all the replicas. But reliable propagation is more difficult to achieve
in an Internet because of the limited capabilities of the links. The consistency mechanisms
must maintain consistency among the database replicas. The traditional approach of strong
consistency, as we have already mentioned at the beginning of this section, requires all
available copies of a data item to have the same value, and is difficult to achieve across
Internet. Executing atomic commitment protocols over slow, unreliable links can be very
inefficient, causing transactions to suffer long delays and reduce throughput. Common
techniques for maintaining strong consistency, such as “primary copy” [16] and “quorum
consensus” [17], severely limit availability during a network partition because they allow a
particular updated item to be updated in at most one partition and they allow reads of only
the most recent values. Furthermore, the performance of strong consistency replication
techniques does not scale well to large numbers of replicas.

In contrast to strong consistency, a database replication system that provides weak
consistency permits greater availability by allowing temporary inconsistencies to develop
among replicas. These temporary inconsistencies are the result of multiple users
independently updating different copies of a database, as well as the time necessary for an
update to propagate to all replicas. The SCSP algorithm guaranties to resolve these
inconsistencies and return the replicas to mutual consistency. The SCSP mechanism perform
a weak consistency that represent a trade-off between database consistency and availability.

The SCSP system is designed to be flexible and adaptable in a variety of ways. Its modular
design permits its components to be configured for different networks and allows its
algorithms, such as the consistency methods, to be selected and tuned for different
environments and applications. In addition, the SCSP algorithm can be used with many
Database Management Systems because it requires no DBMS modification and makes
minimal assumptions about internal DBMS structure and mechanisms.

3.2    From OSPF to SCSP

The origin of the SCSP algorithm, is in the OSPF protocol [18]. Thus the basic structure in
the SCSP protocol is borrowed from the OSPF protocol, where the Hello protocol is used to
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discover and maintain neighbour relationship. The OSPF update mechanism is implemented
by the “Link State Update” and “Link State Acknowledgement” packets. Each Link State
Update packet carries a set of new link state advertisements one hop further away from their
point of origination. A single Link State Update packet may contain the link state
advertisements of several routes. Each advertisement is tagged with the ID of the originating
router. In addition, the OSPF has mechanisms for initial synchronisation of the databases.

Hello Protocol

The Hello Protocol is responsible for establishing neighbour relationships. It also ensures
that communications between neighbours are Bi-directional. The Hello packets are sent
periodically out from all router interfaces. Bi-directional communications are indicated
when router sees itself listed in the neighbour’s Hello Packet. The Hello Protocol elects
“Designated Router” for the network, that Designated Router controls what adjacencies will
be formed over the network. The Hello protocol has different behaviour on broadcast
networks than on non-broadcast. On Broadcast networks each router advertises itself by
periodically multicasting Hello Packets. This allows neighbours to be discovered
dynamically. On non-broadcast networks some configuration information is necessary. Each
router that may potentially become a “Designated Router” has a list of all other routers
attached to the network. A router, having “Designated Router “ potential, sends Hello
packets to all other potential “Designated Routers” when its interface to the non-broadcast
networks first becomes operational.

Database Synchronisation

After a neighbour has been discovered, a bi-directional communication is ensured. The
“Designated Router” is elected for the purpose of establishing adjacencies over point to
point networks and virtual links. The first step in bringing up an adjacency  to synchronise
the neighbours topological database, because in a link-state routing algorithm, it is very
important for all routers topological database to stay synchronised. OSPF simplifies this by
requiring only adjacent routers to remain synchronised. The synchronisation process as soon
as the routers attempt to bring up the adjacency.

Each router describes its database by sending a sequence of Database Description packets to
its neighbour. Each Database Description packet describes  a set of link state advertisements
belonging to the router database. When the neighbour sees a link state advertisement that is
more recent than its own database copy, it makes a note that this newer advertisement
should be requested. This sending and receiving of Database Description packets is called
Database Exchange process. During this process, the two routers form a Master/Slave
relationship. Each Database Description packet has a sequence number. Database
Description packets sent by the master are acknowledged by the slave through the echoing
of the sequence number. Both packets sent from each party contain summaries of link state
data. The master is the only one allowed to retransmit Database Description packets. It does
so only at fixed intervals, the length of which, is the configured constant RxmInterval.

Database updating

During and after database exchange process, each router has a list of those link state
advertisements for which the neighbour has more up to date instances. These instances are
requested in Link State Request packets. The Link State Request packets that are not
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satisfied, are retransmitted at fixed intervals of time RxmInterval. When the database
description process has completed and all Link State request have been satisfied, the
database are deemed synchronised and routers are marked fully adjacent. At this time the
adjacency is fully functional and is advertised in the two router ’s link state advertisements.

The adjacency is used by the flooding procedure as soon as the Database Exchange begins.
This simplifies the database synchronisation, and guarantees that it finishes in a  predictable
period of time.

Conclusions

We can see in the later description of the Hello protocol in the OSPF, that the basis of this
protocol is quite similar to the SCSP. In fact, as we should see, the principal algorithm used
in SCSP have been borrowed from this protocol to allow an efficient synchronisation. Thus
with this characteristics we perform an stand alone protocol which can be implemented with
any other routing protocol that does not have to take care of its database synchronisation.
This feature makes the SCSP protocol more portable to work with any other protocol in
common symbiosis over different architectures. As a complementary protocol, also reduces
the latency time of the main protocol on this issues.

3.3    The SCSP Protocol Specifications

In the above sections we have illustrated the main antecedents for the implementation of this
Software package, the main goal of which is the database or server information
synchronisation based in the SCSP algorithm. In the former step we have chosen the
architecture to solve the data synchronisation problem. Our election has been a weak-
consistency mechanism for database replication over non reliable networks. In the latter
section we have searched for a well tailored algorithm and the election has been the well
known mechanism used by OSPF routing protocol for its database synchronisation. This
algorithm has been developed as stand alone protocol in SCSP[1] specifications, by J.
Luciani. The algorithm efficiency has been rather proven over many years of well
functioning performance of the OSPF on Internet networks. Thus to extend the feature of the
SCSP protocol as a suitable system for many other kinds of database replications, we have
used that specifications to implement a useful software packet for data replication. In the
rest of the chapter we describe the framework of this software project development and the
specifications of the algorithm.

The SCSP attempts to solve the cache replication for distributed protocol entities, which are
bound to a SG. An SG is formed by the Local Server, LS, and a set of directly connected
servers, DCS. By this way, when a server become aware of a change on its cache
information it must immediately propagate the knowledge of this event to all the servers,
which are actively mirroring that state information. All this process must be done without
putting under difficulties the server resources. For this purpose the SCSP protocol places no
topological requirements upon the SG. Thus it does not requires neither routing nor path
calculations. This would impose additional memory requirements for these purposes.
Beyond that, the protocol only requires a minimum memory space for the Finite State
Machine (FSM) allocation corresponding to each Directly connected server or DCS. There
is a Hello Finite State Machine (HFSM), and a Cache Alignment Finite State Machine
(CAFSM) per each server that form the SG. The amount of memory is a function of the
number of SG components. The amount of traffic will also increase depending on the
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amount of servers in the SG because of the major number of packet transactions that will be
needed for the synchronisation is a function of the number of members in an SG.

Thus, the basic elements in the protocol are:

LS: Local Server where will run the SCSP protocol entities under observation.

DCS: Direct Connected Server are the peer of the LS on each FSM, which are
implemented to perform the SCSP individually between each LS in the whole SG.

SG: Server Group is composed of the LS and a set of DCS. It is identified by the
SGID. This SGID will maintain independence between several SCSP processes
running in the same physical network and on the same network nodes.

RS: Remote Server is an extra element, that are part of the SCSP nomenclature and
indicate that it is an external element of the group.

All those elements are represented Figure 1.

Protocol  basic elements

LS: Local Server

DCS:Direct Connected Server

RS: Remote Server

SG: Server Group

VC:Virtual Circuit

SG

DCS

LS

DCS DCS

RSDCS

DCS

VC

VC

VC

VC

Fig  1. Basic Elements in the SCSP Algorithm

The SCSP protocol is implemented to allow running several instances of SCSP in the same
group of nodes. This feature is depicted in Figure 2a. It is also possible that the same server
or node belongs to different groups, then it is necessary to distinguish the instance of each
group running in the same node. This characteristic is shown in Figure 2b. In this way,
different groups can overlap and several instances of SCSP can run on the same set of
network nodes. To achieve this feature we have implemented an initial configuration module
where the protocol can read the correspondent data to fit the basic information for each
FSM. This data is based on the MIB definitions [19] for protocol management that will be
explained in the environment analysis chapter for the software project development.
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a) Various instances of SCSP running in the same group b) Instances of SCSP in the same server which
belongs to different SG

Figure 2. Different instances of SCSP running in the same server

The SCSP algorithm provides the mechanisms necessary to allow the overlap of
independent instances of the protocol running on the same node belonging to the same or
different SG.

The protocol is identified by its Protocol Identifier (PID) and in the same way the group is
identified by the Server Group Identifier (SGID). Thus with the PID/SGID pair plus an
additional value called the Family Identifier (ID), we achieve our proposal to identify each
instance of SCSP in the case that would be different instances of the same protocol running
in the same group, or several instances of the SCSP if the same node belongs to different
groups.

In several cases this mechanism is also appropriate to avoid situations where a single server
could receive information from different servers which are implementing the same protocol.
This situation happens quite often when a server is situated on the border of various groups
domain or in the middle of different scenarios, then the server can receive wrong packets
that it must drop out after checking the right PID/SGID or the Family ID. For that reason it
is important to implement this auto-configuration module to read that information to check if
they are receiving the packets from the servers that belong to the same SG. This
configuration class will read the same text file in all the servers of that SG and this class
also will read another text file with different PID/SGID, if it is going to run another SCSP
process among the servers of another SG. An example of how the Family ID can be useful is
the case when we have both relatively static and relatively dynamic information in the
database. Different state of timeouts of the protocol can be tied to two different Family Ids
in the configuration file for this database. The result is more efficient use of the network
resources for database management. We can run one instance of the SCSP to synchronise
the static part of the database. We can run another instance of the SCSP in the same LS that
will read other configuration specifications to perform the replication for the dynamic data.

The program is capable of using an auto-configuration service, where it can read the
information about the PID, SGID, Family ID and many other values that it will use in its
normal operation. All that information is read from external files that can be managed
directly by the network operator or any other program, which can write directly over that
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text file. This module is implemented in the same way than the rest of the program using
class structures for its development. Thus the configuration class used by the auto-
configuration module is shown in the next Figure 3.
Configura class:

Provide an auto-configuration service

Read data from external   files:
config. txt
hosts

Fill one data structure
data_ini:

adressa

HelloInt

DeadFact

FamID

DCSAReInt

DCSCSUSReInt

DCSCSUReInt

DCSCSAMaxRe

CSAReDepth

Functions:
Config_readport()
Config_readelem()
Config_readdata()

Returns the Port  number  used  in the protocol
Returns the  number  of  servers in  the group (DCS’s + LS)

Returns  an array withdata_ini elements  to fill  the  object  table of each DCS

Fig. 3.  Configuration class

All these information identifiers corresponding to each server and other information to fit on
the machine tables are based on the MIB [19] standards. For this purpose we have
implemented a series of basic classes to deploy on the background and to define the
framework for the whole protocol implementation based on these definitions. Those
definitions are based on the SMI specifications that will be detailed later in chapter 4.

After the definition of the basic elements of the protocol and the fundamental components,
like the identifiers of the protocol, we are going to describe the SCSP protocol algorithm
and the different sub-protocols that compound the whole specification.

Basically the SCSP is divided in three independent but interrelated protocols, which are:
➢ Hello Protocol
➢ Cache Alignment Protocol
➢ Cache State Update Protocol

3.3.1  Hello Protocol

This is the initial sub-protocol of the whole implementation. In this step two devices in the
group determine if they can talk to each other.
An LS has associated a Finite State Machine (HFSM) with each of its DCSs. That machine
monitors the state of the connectivity between the LS and the DCS. For this purpose we
have implemented an independent object for each FSM which compose the Hello Protocol.
When the connection between the LS and its associated DCS is available, the State Machine
transitions to the Bi-directional state. In this moment the Cache Alignment protocol starts to
request the update information on each database. All those steps are described in the flow
diagram depicted in Figure 4.
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Fig. 4. Hello Finite State Machine, flow diagram

The Hello Protocol has four steps in the finite state machine.
❑ Down State
❑ Waiting State
❑ Unidirectional State
❑ Bi-directional State.

Hello Finite State Machine
This machine has been developed with the specifications as guidelines, so it has the
following phases:
i)  Down State: It is the preliminary state where the machine is just started.
 
ii)  Waiting State: In this moment the Hello machine have just checked the physical

connection between the LS and its DCS. When the Hello Interval expires the machine
sends Hello messages packets. Those packets are formed with an additional list of
addresses of other servers from which the LS has received other Hello messages during
the past . Then FSM wait any incoming Hello message from any other server to check
which kind of connection has the LS with that DCS. It depends of whether the message
arrives during a period of time called Hello Interval or in another extended period
composed by the multiplication of the Hello Interval by another factor called Dead
Factor. Thus if the packet arrives during the latter period of time the packet is considered
valid. In the other cases it is considered that the packet has arrived late. Then in this case
the DCS could be stalled, or there will be an Unidirectional connection between both
servers. Otherwise if the packet arrives in time the Hello machine transitions to Bi-
directional state. It means that we have achieved a total connectivity between the two
servers.
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iii)  Unidirectional State: When the LS receives a Hello message in time (it means during the
Hello interval) and the LS address is not included on the additional list of odf addresses
of other servers that the LS has received in one of the packet’s field, then the LS
transitions to the Unidirectional connection.

iii)  Bi-directional State: This state is achieved when the Hello message received in time
includes the LS address in the field of the packet which contains the list of addresses of
other servers. It means that there is a bi-directional connection between both servers.
Another possibility to reach this state, is when the LS receives a message after the Hello
Interval expires but it is received within the interval comprehended by the Hello Interval
multiplied by the Dead Factor and it also contains the LS’s address in the packet. Each
Hello machine has associated a Cache Alignment machine, which transitions from its
Down state to the Mater/Slave Negotiation state.

3.3.2  Cache Alignment Protocol

The purpose of this part of the whole protocol, is the database alignment. In this process the
neighbours exchange summaries information about the entries in their database. Summaries
are used since the database itself is potentially quite large. Thus based on these summaries
the neighbours can determine whether there is some information that each needs from the
other, if that is the case, the pertinent information is requested and provided. At the end of
this phase, the two neighbours will have the information in their database totally updated
again. The implementation of this protocol is made in the same way as the Hello protocol.
There is also one FSM associated with each LS-DCS pair. This machine has its own
functions to manage the correspondent data that it will receive.

A description of all the algorithm of this part of the total protocol, is illustrated in Figures 5
and 6. Figure 5 shows the initial steps of the algorithm till the FM reaches the Cache
Summarize State.
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Fig. 5  Cache Alignment Finite State Machine (Master/Slave Negotiation)
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Figure 6 shows the latest part of the algorithm, when the FM finally reaches the Aligned
State.
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Cache Alignment Finite State Machine

There is a CAFSM in the LS associated with each of its DCSs on a per PID/SGID basis.
This machine monitors the state of the cache alignment between the servers in the same way
than the HFSM were monitoring the state of the connection between the LS and the
associated DCS. Quite similar to the HFSM, the CAFSM has different states that we have
seen in figures 5 and 6. Those states are:

i)  Down, Is the first state in the CAFSM. In this state the machine will keep inactive until
the HFSM transitions to the Bi-directional state.

ii)  Master/Slave Negotiation, In this state, when the CAFSM receives a packet, the machine
can perform three different transitions:

¾ The first one, is when the CAFSM receives a packet with the flags field set and
no other records in the rest of the packet’s body. It means that the LS must take the
role of Slave in the rest of cache information transactions. The LS informs to its
DCS associated about the decision adopted sending a packet to its DCS with the
Master’s flag off. At the same time, if the LS’s cache is not empty and there are
CSAS records to send, it will fit all or part of them in the same packet and then the
CAFSM transitions to the Cache Summarise State.

¾ The second mode, is when the LS receives a packet where the flag position,
which indicates the Master flag is off. It means that the LS can take the role of
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Master. If there are CSAS records in the rest of the packet the LS can process it.
After that, the LS will send a new packet indicating its new status as Master and if
there are also CSAS Records to send, all or part of them will be fitted in the same
packet and the machine changes to the Cache Summarise State as in the first mode
shown.

¾ Finally, when there is neither the first case nor the second the packet received
will be discarded.

iii)  Cache Summarise State, The connection and the role of each one have been already
fixed for posterior transactions. Then only remains to start the cache alignment between
the LS and its DCS associated in the respective HFSM and CAFSM. First of all, in this
process all the packets which have something wrong will be discarded. We could find
errors such as some discordance in different information fields of the same packet like
the packet size field different from the real size, a mistake in the CA Sequence Number,
or that the Master/Slave flags are wrong according at the real status of the LS. But
otherwise, if the LS receives a packet with the CA Sequence Number and the M/S flags
are correct then the message will be processed and if the LS’s cache has some CSAS
records to be sent, the LS will fit all or part of them in a new packet to the DCS
(indicating that there are still some packets to send in the LS with one of the Flags field).
In the case that there are no more CSAS Records to be sent the CAFSM transitions to the
Update Cache State.

iv)  Update Cache State, In the CAFSM there is a structure called CRL  (CSA Request L ist).
It forms a buffer where the Cache State Advertisement (CSA) are stored. It contains
those cache entries which we have to update in our LS’s cache from the same data as the
DCS has in its cache. Thus, if the CRL of this DCS associated at the CAFSM is not
empty upon transition into the Update Cache State, then the LS solicits the DCS to send
the corresponding CSA records. For that purpose the LS forms CSU Solicit (CSUS)
messages from the CRL. This request will be sent to this DCS and it will respond by
sending to the LS one or more CSU Request messages containing the information on its
cache referent to the petition in the CSU Solicit that it has just received in the request.
Then upon receiving the CSU Request, the LS updates its cache with the newer cached
information that contains the CSU Request. At this point the LS will send one or more
CSU Replies to the DCS. This process continues until all the CSA Records
corresponding to the CSAS that were in the CRL have been received by the LS. At this
moment the LS has a completely updated cache. Then the LS transitions the CAFSM
associated with the DCS to the Aligned State.

v)  Aligned State, The LS will behave according the Cache State Update Protocol.

3.3.3  Cache State Update Protocol

A flooding state is performed and any new learned information is sent to all the neighbours
as soon as possible except to the one that has provided the information.

Figure 7 depicts the behaviour of the protocol during the Cache State Update sub-protocol
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Fig. 7  Cache State update sub-protocol

This protocol uses the Cache State Update (CSU) messages to update dynamically the state
of cache entries in servers when a new event has taken place (adding or removing an entry
from one client or if the cache has been administratively modified,…). The CSU messages
contain zero or more CSA records which have a piece of the state of a particular cache entry.
This transaction is allowed only when the corresponding DCS’s CAFSM is either in the
Aligned State or the Update Cache State. In this protocol two kind of CSU messages are
flowing: CSU request, CSU Replies.

❑ The former is sent from an LS to one or more DCSs for two reasons:

¾ When the LS has received a CSUS message and must respond to this DCS that
has formulated the petition of updating information.

¾ The second case, is when the LS becomes aware of a change in a cache entry.
This event could be possible in two ways, either through receiving a CSU Request
from one of its DCS (in this case it has to send a CSU Request to each of its DCS s
except to the DCS from which the newest information has been received. The other
possibility is when the change is in its own cache. In the latter case it has to send a
CSA Request to each of its DCSs and the new state is noted in a CSA record which
is appended to the end of the CSU Request message mandatory part. In this way, the
changes are propagated throughout the whole SG.

❑ The latter CSU message are used when a LS receives a CSU Request from one of its
DCSs. Then the LS acknowledges the CSA records which were contained in the CSU
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Request by sending a CSU Reply. This reply contains one or more CSAS records
corresponding to those CSA records which are being acknowledged.

Thus in the above paragraphs we have described the SCSP specifications and the headlines
for the implementations. Hence in the next chapters we focus our work in the software
implementation which final behaviour must be the same that we have seen in the SCSP
specifications.
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Chapter 4

Protocol High Level Design

In this chapter we describe the basic environment and initial steps for any protocol
development. We explain the purposes that we want to reach in the implementation and how
we can design a portable software implementation of the SCSP specifications.
Afterwards, we explain briefly the Operating System (OS) facilities to allow that the SCSP
implementation performs a data synchronisation efficiently. In this point we also describe
the language chosen for the implementation. In this chapter, we present the basic data
structures using the ASN.1 notation. Hence, we establish the object background for the
implementation and achieve an open implementation framework.

4.1    Implementation Introduction

In the third chapter, was described the protocol specifications and the basic mechanism to
achieve the servers synchronisation. In that chapter we explained how each of the three sub-
protocols, that compound the whole SCSP protocol, is individually performed by a different
FSM that will check the state between the LS and the DCS.
Thus before starting to describe in further details each part of the protocol implementation,
in this chapter we show the global behaviour. Then in Figure 8, we can see the main
modules of the implementation.
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In the core of the software package is the implementation of the SCSP itself. In this core we
have all the FMSs for each sub-protocol implemented in separate classes. Those classes
perform the basic algorithm described for each sub-protocol in the specifications.

The main goal of this project is design software portability. For that purpose we have tried
to implement the program in different layers. Thus we can develop in the upper layer the
algorithm totally isolated from the functions that will access directly to the OS calls. Hence,
we can achieve a modular package where in the case to change to another scenario we only
have to change the pertinent functions that manage directly the calls over the specific
platform where it is running. We can see the different layers of the implementation in
Figure 9.

HFSM CAFSM CSU

Basic  Functions Module       MIB
 Specifications

Operating System functions

Algorithm Implementation

Functions Implementation

Platform dependence Layer

Generic  Protocol
Application Layer

Fig. 9. Different Layers in the program implementation

Hence, we have already established the framework for the implementation. It means that we
will try to follow the SCSP specifications but we also have to obtain a well tailored software
to perform an efficient job over different scenarios. Thus in the above paragraph we have
described the modularity we want to achieve in the implementation and the independence
from the specific machine that the SCSP will run. Now, in the rest of the chapter we will try
to go deeper in the OS details and the background for the definition of data structures using
the different notations required for that.

4.2    Operating System Issues

The principal issues about any implementation are what language or compiler must we use
to develop the network software. The first answer is quite often C, because it is the
dominant language [20] for implementing systems software in general, and networks
software are most certainly systems software. This is not accident, C gives the ability to
manipulate data at the bit level (it is often called bit twiddling), which is necessary when
you are implementing network software. The second question, is what operating system
(OS) will the network software use. It depends on whatever OS runs the node in question.
Perhaps the most extended OS in every node, host or server is the UNIX or LINUX systems,
so it is necessary to understand the role played by the OS. Simply stated, network depends
on many of the services provided by the OS, and in fact network software often runs as part
of the OS. However we have tried to minimise this dependence using only few system calls
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to achieve software portability. Anyway, network protocols have to call the network device
driver to send and receive messages, the system’s timer facility to schedule events, and the
system’s memory subsystem to allocate buffers for messages.

In addition, network software is generally a complex concurrent program. It depends on the
operating system for process support and synchronisation. Hence, we will need to know few
system calls for Timers and communications modules.

Thus, first of all we need to establish clearly all the modules we will need for the
implementation. Afterwards, we describe the interaction among the different procedures or
modules. For that reason it is essential to know the OS where the program have to run.

While each OS provides its own set of routines to read the clock, allocate memory,
synchronise processes, and so on, we need to know these features in our OS very well to
translate those calls into an objects abstraction which manage directly the system calls and
will return the corresponding value to next level protocol calls, where we can concentrate on
the algorithms that make up the SCSP specifications. From this point of view, it makes the
protocol implementation more efficient than the case that we would have to make a direct
system call from the normal level where the protocol is working. Thus, this will establish an
initial groundwork needed for the upper level abstraction where the protocol will be
running.

This background is simply a codification of the fundamental components where the
protocol’s algorithms can lie and where the definitions are taken from the SNMP and ASN.1
notation to give our implementation openness for posterior designers.

Thus, based on this guideline and also with the protocol specifications which we have
already seen in the last chapter, we know that the implementation requires a series of finite
state machines for each connection between LS-DCS. Thus, we need a language which
provides an object-based framework for our implementation to obtain an abstraction of the
objects hiding its (low level calls to the OS) performance to the rest of the implementation.
Thus, those objects may be conveniently thought of data structure with a collection of
operations that are exported. That is, we make those objects available for invocation by
other objects or from the next step in the whole SCSP development.

Language Implementation

The fashionableness of object-based programming has been accompanied by a proliferation
of object-oriented languages. One of them, probably the most well-known example, is the
C++. That is the reason why we have chosen C++ for the implementation. All good
computer scientist worship the good of modularity, since it brings many benefits, including
the all-powerful benefit of not having to understand all parts of the problem and to deal with
this we use the features of C++. The Alternative for C++ would be Java. The main benefits
of JAVA concerned is that by writing as much of the software as is feasible in Java, it
becomes platform independent. Java’s virtual machine and compiler act as an isolating layer
between the OS and the software. Otherwise, we can argue that it is possible to write OS
independent code with C and C++. We have chosen to base our implementation on the
characteristics of the software from the “Free Software Foundation“ (the makers of GNU
software) that actually can probably compile on more OS than Java has support for.
Anyway, writing C and C++ code requires skills and knowledge that first have to be
acquired. Also the compilers deal with OS and processors basics that vary a lot depending
on the system. In those cases, we get into trouble with libraries, system calls, differing
system header files and many things like that.
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The drawback of Java is that it needs to do a lot of text processing and a fair amount of
computing and operating system interaction is involved. Currently, the performance of Java
make it less suitable for writing applications that need raw computing speed. Thus in this
case we chose C++ because we felt that it is the best option for providing enough speed to
the protocol. And with the object’s definitions, which principal descriptions are based in the
MIB specifications we provide our software the open characteristics for any protocol based
on OSI guidelines. At the same time, we have an abstract implementation of modules that
can invoke and return operations from other objects from the algorithm. Hence, the code has
been implemented in the way that can interpret messages and maintain a state associated
with the protocol situation at each moment.

OS issues and process types

Typically, any protocol implementation has to be concerned about a lot of OS issues. Most
Operating Systems provide an abstraction called process, or alternatively thread. Each
process runs largely independently of the others, and the OS is responsible of making sure
that resources, such as address spaces and CPU cycles, are allocated to all the current ones.
The process abstraction makes it fairly straightforward to have a lot of things executing
concurrently on one machine that is the reason to bound the implementation to a well-known
system. We need this processes mechanism for the implementation because the SCSP is a
non stand-alone protocol, it serves like a complementary service provider for other protocols
which will make use of the SCSP features for their database synchronisation. Hence, each
application is carried on its own process and some additional goals inside the OS might be
executed such as other processes. An inconvenience exist when the OS stops one process
from executing on the CPU and starts up another one. This change, called context switch,
means the corresponding waste of time for the reallocation of new resources, decreasing the
global efficiency of the program.

When designing a protocol implementation the first question is to identify the processes and
their behaviour. There are essentially two choices:

❑ The first, which is called process per protocol model, where each protocol is
implemented by a separate process to achieve the aim of an efficient symbiosis between the
main protocol and the SCSP in the same server, or host. In this way, a message can move up
or down the protocol stack and also can be passed from one process/protocol to another. At
the same time, in the SCSP we need to receive and update directly the data in the main
protocol cache or database. How one process/protocol passes the message to the next
process/protocol depends on the support that the OS provides for the inter-process
communications, and in this case it is through the shared memory management [21]. There
is a simple mechanism for enqueuing a message with a process, the important point,
however, is that a context switch is required at each level of the protocol with the
consequent time consuming operation. That is why we choose this kind of implementation
only for the inter-process communication between SCSP and the main protocol, just to
minimise those time expenses.

❑ The alternative, which is called the process per message model, treats each protocol as a
static piece of code and associates the process with the messages. When a message arrives
from the network, the OS dispatches a process which is responsible for the message and
moves the message up to the relative high level protocol, according to the headers contained
in the message. At each level, the procedure that implements that protocol is invoked. The
eventual results obtained are sent to the next protocol level. For outbound messages, the
application process invokes the necessary procedure calls until the message is delivered, and
in the SCSP this procedure is quite efficiently succeeded with a I/O signal handler.
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The process per message model is generally more efficient because a procedure call is an
order of magnitude more efficient than a context switch. The former model requires the
expense of a context switch at each level, while the latter model costs only a procedure call
per level. For that reason, we choose the latter model instead of process per protocol for the
different implementation levels inside the whole protocol, so we have this characteristic for
the implementation of the different sub-protocols (Hello Protocol, Cache Alignment
Protocol and Cache State Update protocol) that compound the whole SCSP protocol. With
this model we manage the messages among the FSM directly without any context switch,
thus a message from any high level part in the FSM does not reach down to receive a
message from any low level, instead of that, the functions that perform the low level in the
FSM deliver directly the message to the high level FSM protocol. This is because the
receiving operation is being executed in the high level protocol, simultaneously with the
sending function in the low level part of the protocol. It means that all the processes are in
the same context and the high level FSM is waiting for new messages to arrive, which would
result in a lower cost for that protocol switch context.

4.3    Protocol development states

Now, we can show the different states in the protocol development. The subsequent steps
are generic guidelines to achieve any well suited protocol implementation. Mainly there are
four states in any software project, the first is to clarify what kind of language we have to
use for the implementation. The second one, is to know over what kind of OS the program
has to work. Those points are already explained in this chapter. Thus, in the rest of the
chapter we are going to describe the next two points involved in the development of the
program itself.

Graph and Background

The first step in the protocol implementation, is trying to clarify the main functions and the
algorithm that we are going to use. For that purpose, a graph is developed to see the right
position of the protocol among the different Internet architectures and protocol definitions.
Figure 10, is illustrates all the elements that we will need for the project development.

User
Interface

SCSP

TCP/IP
OBJECTS
TABLES

User
Interface

SCSP

TCP/IP

DATA  BASESDATA  BASES

OBJECTS
TABLES

DATA  BASESDATA  BASES

AutoConfig.
System

AutoConfig.
System

Fig. 10. Complementary modules for the SCSP implementation
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This configuration graph reflects the operations and objects that are exported externally. We
also have to know where the SCSP is allocated in the global structure of standardised bodies
(ISO and the IETF). It is important to define the interfaces between those existing IETF
blueprints, where the SCSP functions will lie. Thus, among the standardised set of protocols
above the IP mechanism, like TCP or UDP, the characteristics of the SCSP specifications
suggests that it is possible to use as “hard core” of the program implementation the UDP
protocol. The reason is that the UDP protocol supports a more flexible mechanism which
make it easier to plug our protocol in the IETF architecture. It is also quite simple to make
use of the UDP features to obtain a rapid and efficient protocol, without taking care about
strict and reliable connections which slow down the protocol functions.

Objects definitions

We have to implement the objects and routines to be accessible from the upper levels of the
protocol guided by the protocol specifications. We also have to define the interface of each
operation, and the performance which is expected from each module to export to the rest of
modules in the program. All the data structures must follow the protocol directives. We can
see an example of those data implementation in Figure 11.
Packets format:

Fixed_part
version Type_Code Packet_Size

Checksum Start_Extension

Common_Part Protocol_ID ServerGroup_ID

unused Flags

SenderID_lengthSenderID_length Num_Records

Sender_ID

Sender_ID

Receiver_ID

Add_RecID_Record

Receiver_ID

Rec_ID_Len Receiver_ID

Receiver_ID

Hello_cab
HelloInterval DeadFactor

unused Family_ID

CSAS_Record Hop_Count Record_Length

Cache_Key_Len Orig_ID_Len N unused

CSA_Seq_num

Cache_Key

Originator_ID

CSA_record
CSAS_in_CSA (type: CSAS_Record)

CSA_Prot_Part (type: Cache_data)

CA_cab CA_Seq_num32

Fig. 11. Protocol specifications for data structures
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Those definitions are based on the SMI objects with the ASN.1 nomenclature. An example
of this type of notation is depicted in Figure 12. The decision to follow the SMI descriptions
is to be able to create a framework for the later development of the SNMP management
through a Proxy agent. Afterwards, the corresponding events will be defined to be
forwarded between different modules or structures. The messages are implemented in fixed
data structures which will be used to form the corresponding messages inside the Finite
State Machines, which will be utilised in each protocol step.

Objects definition:

Objects  description:
We need some  previous data structures  for the  posterior  implementation  of  the managed  objects  for
hosts or  routers that  use SCSP.These structures follows  the Structure of  Management  Information (SMI)
for  the Simple Network  Management Protocol Version 2 (SNMPv2)

Integer32 ,and INTEGER :  represents integer information between  -2^31  and  2^31-1  inclusive
 it is implemented  by int   value

OCTET STRING :  represents  text  data, there is no  SMI  specified  size for this struct in  the Standard specifications,
but it have a  fixed  limitation  to 65  characters,  it is implemented  by
Octet_String { char[65] }  Structure
(The Ip Address is  a 32-bit  address, and  is represented  as an OCTET STRING [4])

Unsigned32 :  represents integer  value between 0 and 2^31-1 inclusive, it is implemented by unsigned short     value

INTEGER  (0...64):  represents integer information between 0 and 64  inclusive  it  is  implemented  by
integer_6    class.

Counter32 :  represents a  non-negative  integer  which  monotonically  increases  until it  reaches a maximum in   2^32-1
after that it starts  again  from zero, it is implemented by      Counter32      class.

Fig.12. Basic SMI definitions based on ASN.1 notation

After the definitions of the modules and basic structures, we also have the basic events and
operations in the protocol that are:

Time out release which is sent to the correspondent FSM. There is an array of
structures which achieve a systematic time counting which update its internal values through
a system call. Those structures have been implemented without involving any tight system
related to the OS that would be so much dependent from the platform. The goal of this
structure is to maintain a stable and reliable time system to be checked at any moment with
its own functions. Otherwise it can be managed independently from each FSM without the
system requirements.

Another event is the message reception which is taken care of by the I/O signal
handler. Its basic function is to store the address where the message is going to be allocated
in a buffer. Then, the FSM is able to access directly to that message and process it. The
headers are stripped from messages and then interpreted inward on each FSM. The details of
that process are hidden to the rest of the protocol. All the functions to manage this stack are
provided internally in the object definition like the Timers structures. Further details will be
explained in the communications module and the sender module. Those will receive the
message and address where it must be forwarded and they must try to achieve its function
sending the message with a non-blocking system.
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Application Interface

The application interface provides the mechanism used for data transaction between the
application, which will use the SCSP for its data synchronisation and the SCSP itself. We
will use the socketpair() function provided by the OS to send the data that the application
wants to update through this pipe facility to the SCSP data strucutures.
The SCSP protocol keeps track of the cache information through the list_CSA structure,
which is between both protocols. For that reason we have used an independent
implementation for the cache to make future extensions easier and add features to the cache.
A detailed description of the list_CSA is shown in section 5.4.4. Figure 13 shows a
graphical example of how it works.

This is an important feature of the SCSP implementation. We use the list_CSA structure that
forms an independent array of objects that we can fill with any kind of data. Each Directory
provider will fit its data on the records of the array and the SCSP takes care of propagating
this data and achieving the replication with other providers. The other party, the provider
which receives the records will extract the pertinent data that he requires for updating his
own DIT or database.
Thus, the SCSP provides the abstraction of the structures to allow the management of
different kinds of information.
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Fig. 13. Interprocess communications
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Chapter 5

Protocol detailed design

In the previous chapters we have seen a description of the database synchronisation, which
is the problem we try to solve in this Thesis. We chose the SCSP as the solution for that
problem. In the next chapters were described the specifications and environments where the
SCSP is allocated among other protocols for the information management. In this chapter we
illustrate all the pieces that the SCSP requires for its implementation. Hence, below in the
next sections are stripped all the details of the solution adopted for the system
implementation. All the structures are exposed, and the system facilities required explained.

5.1    Timer Implementation

This module is quite important because it has to synchronise all the protocol functions. Each
FSM needs its services to be aware of the interval between two consecutive requests. In case
one of its requests had been lost, it has to formulate again the same request.

For this purpose, we have implemented an independent class called Timer  that has its inner
functions and a private counter. This maintains the time value and can be managed from the
other objects through its own functions, those functions can stop, or reset the counter value,
in function of the program requirements.

The Timers specifications are defined like global variables at the beginning of the program
to be available from every part of the protocol. Its counter must be increased every new loop
that the program reinitialises the array of classes for the process. Hence, we achieve our aim
to minimise the dependence from the system’s kernel. The alternative would be using an
internal interruption with its handler module that we also need to catch the OS notification
when the alarm event arrives.

5.1.1  OS facilities for Timer Implementation

We use a time function provided by the OS, which is translated to a C library in a function
named clock(), which returns the amount of time in seconds since January 1, 1970,
Universal Coordinated Time (UTC) also known as the Epoch. Most modern processors
maintain a battery-backup time-of-day register. This system’s clock continues to run even if
the processor is turned off. In fact, when the system boots it consults the processor’s time-
of-day register to find out the current time. The system’s time is maintained by the clock
interrupts and at each interrupt the system increments its global time variable by an amount
equal to the number of microseconds per tick. (For the HP300, running at 100 ticks per
second, each tick represents 10.000 microseconds)[21]. The time is always exported from
the system as microseconds, rather than as clock ticks, to provide a resolution-independent
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format. Internally, the kernel is free to select whatever tick per rate best trades off clock-
interrupt-handling overhead with timer resolution. As the tick rate per second increases, the
resolution of the system timer improves but the time spent dealing with hardclock interrupts
increases. As processors become faster, the tick rate can be increased to provide finer
resolution without adversely affecting the applications.

All filesystem (and other) timestamps are maintained in UTC offsets from the Epoch.
Conversion to local time, including adjustment for daylight-savings time, is handled
externally to the system in the C library where we can find the function which will increase
the counter value inside the Timer class.

5.1.2  Timer class structure

In the former definition we said that there is a Timers array defined at the beginning of the
protocol. Each element of this array is for one of the different FSM running in the Hello
Protocol and the Cache Alignment Protocol between the LS and each DCS that compose the
SG. There is another array for the Cache State Update protocol, to keep track of the
outstanding CSA records in the CSU request for each DCS to which the CSU was sent from
the LS and for which an acknowledgment has not been received. Figure 14 depicts the basic
functions defined for the Timer class implementation.

Timer class:

Provides  an  homogeneous  counter  for  all  the  protocol

Its  value  is  updated  every  new program loop, with  an  internal   function

There is  a  Timers  array   for each  HFSM, CAFSM and  CSU

Timer  * timerarrayHelloInt
Timer  * timerarrayHelloRec
Timer  * timerarrayCaInt
Timer  * timerarrayCSUInt
Timer  * timerarrayCSUInt

timeHelloInt
timeHelloRec
timeCaReXmInt
timeCSUSReXmInt
timeCSUReXmInt

The program is bound to the kernel function  clock() To update each Timer in  arrays element every time
the protocol   starts a new loop.

Functions in  the Timer class:

Timer_on()
Timer_off()
Timer_reset()
Timer_value()
Timer operator++()
Timer_update()

Enable the Timer counting
Disable the Timer
Reset  the Timer value
Returns  the Timer  value
Increase  the Timer value
Update the Timer counter with a
system functionclock()

Fig. 14. Internal functions in the Timer class

In all those transactions, if the related FSM receives the required answer or
acknowledgment, the Timer associated is stopped and maybe reset for a new request. If the
Timer has expired, then the FSM has to check the counter and to act according to its
definitions. Maybe resending the packets or changing the Machine state, and restarting all
the process afresh from the beginning. The Timer class is one of the important elements in
the protocol implementation because on its functions depends the correct performance of the
rest of the protocol.
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In case there are no messages from other servers the protocol performs an idle state. Before
going to sleep, we fix the interval where it must wake up to check the timers and make the
necessary state transitions. The period of time that the program goes to sleep is fixed from
the configuration file and depending of how accurate we want to make the behavior a tight
schedule can be established.

5.2    Descriptors and I/O

The descriptors definition, are important in a protocol implementation, and we will use their
features later in the communication module. For the user processes, all I/O are done through
descriptors.

All the computers store and retrieve data through peripheral I/O devices. Storage devices
such as disks are accessed through I/O controllers that manage the operation of their slave
devices according to I/O requests from the CPU. The hardware peculiarities are hidden from
the user by high-level kernel facilities, such filesystem and socket interfaces. Other details
are hidden from the bulk of the kernel itself by the I/O system. The I/O system consist of
buffer-caching systems, general device-driver code, and drivers for specific hardware
devices that must finally address peculiarities of the specific devices.

5.2.1    Types of I/O Descriptors

There are four main kinds of I/O: filesystem, the character-device interface, the block-
device interface, and the socket interface which is related to network devices. Regards our
software, we will focus the attention in the network devices, which are accessible through
only the socket interface.

System calls that refer to open files take a file descriptor as an argument to specify the file.
The file descriptor is used by the kernel to index into the descriptor table for the current
process to locate a file entry, or file structure. The file entry provides a file type and a
pointer to an underlying object for the descriptor. The file entry may also reference a socket,
instead of a file. Sockets have a different file type, and the file entry points to a system block
that is used in doing inter-process communication. The virtual-memory system supports the
mapping of files into the address space of the process.

The set of file entries is the focus of activity for file descriptors. They contain the
information necessary to access the underlying objects to maintain common information.

The file entry is an object-oriented data structure. Each entry contains a type and an array of
function pointers that translate the generic operations on file descriptors into the specific
actions associated with their type. There are two descriptors types: files and sockets. The
operations that must be implemented for each type are as follows:

❒ Read from the descriptor
❒ Write to the descriptor
❒ Select on the descriptor
❒ Do ioctl operations on the descriptor
❒ Close and possibly deallocate the object associated with the descriptor

Each file entry has a pointer to a data structure that contains information specific to the
instance of the underlying object. The data structure is opaque to the routines that
manipulate the file entries themselves.
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Some semantics associated with all file descriptors are enforced at the descriptor level,
before the underlying system call is invoked. These semantics are maintained in a set of
flags associated with the descriptor. For example, the flags record whether the descriptor is
open for reading only, an attempt to write it will be caught by the descriptor code. Thus, the
functions defined for doing reading and writing do not need to check the validity of the
request, we can implement those functions knowing that they will never receive an invalid
request.

5.2.2    Descriptor Flags

Other flags that we will need for the file descriptor used for the communications include:

❒ The no-delay (NDELAY) flag: If a read or write would cause the process to
block, the system call returns an error (EWOULDBLOCK) instead.

❒ The asynchronous (ASYNC) flag: The kernel watches for a change in the status
of the descriptor, and arranges to send a signal (SIGIO) when a read or write
becomes possible.

Other information that is specific to regular files also is maintained in the flags field, but this
information is not relevant for our purpose:

❒ Information on whether the descriptor holds a shared or exclusive lock on the
underlying file.
❒ The append flag, each time that a write is made the offset pointer is set to the end
of the file.

Each entry has a reference count. A single process may have multiple references to the entry
because of the dup or fcntl system calls. Also, file structures are inherited by the child
process after a fork, so several different processes may reference the same file entry. This
semantic allows two processes to read the same file or to interleave output to the same file.

5.2.3    Functions for the management of descriptors

For the descriptor’s management the system provides the function fcntl , this system call
manipulates the file structure that we will use in the communications module.
In this section we have a description of the management of file descriptors for the data
reception. Figure 15 depicts the structure used to store the data received from the DCS and
we will use the fcntl  facilities to perform an efficient data management over the socket file
descriptor. The steps to configure the reception function are:

¾ System interrupt is bound to the socket used for incoming messages
extern int sockfd;
sockfd = socket ( AF_INET, SOCK_DGRAM,0);
my_addr.sin_family = AF_INET;
my_addr.sin_port = htons(port);   /* we read the

port value in the file config.txt */
bind(sockfd,(struct sockaddr *)&my_addr,
sizeof(struct sockaddr));

¾ Fix the socket to be aware of each I/O interrupt that take place in our port
fcntl(sockfd,F_SETOWN,getpid());



38

fcntl(sockfd,F_SETFL,FASYNC);

¾ Function implementation to handle the interrupt
void manejoin(int)

Finally, by this function we catch the just arrived data and fill the structure dato_bufer
shown in Figure 14. After that this structure is inserted in the Template buffer called buferet,
with its function pon().

dato_bufer remite

mensaje

len

DCS identifier, from which was received the message

Message data, array of characters

Message length, number  of bytes

Fig. 15 Data structure to store the message received

We can use the fcntl utilities to make the following changes to a descriptor:

a) Duplicating a descriptor as thought by the dup system call

b) Setting the close-on exec flag. When a process forks all the parent’s descriptors
are duplicated in the child. The child process then execs a new process. Any of the
child’s descriptors that were marked close-on-exec are closed. The remaining
descriptors are available to the newly executed process.

c) Setting the descriptor into non-blocking mode. If any data are available for a read
operation, or in any space is available for a write operation an immediate partial
read or write is done. If no data are available for a read operation, or if a write
operation would block, the system call returns an error showing that the operation
would block, instead of putting the process to sleep.

d) Forcing all writes to append data to the end of the file, instead of at the
descriptor’s current location in the file.

e) Sending a signal to the process when it is possible to do I/O.

f) Sending a signal to a process when an exception conditions arises, such as when
urgent data arrives on an interprocess-communication channel.

g) Setting the process identifier or process-group identifier to which the two
I/O-related signals in the previous steps should be sent

h) Testing or changing the status of a lock on a range of bytes within an underlying
file.

The fcntl function avoids to maintaining the program all the time pending of incoming data
in our file descriptor. We want that our program must be able to read the data from the
remotes DCSs connected to the receiver socket for incoming data. In the unfortunate case
that in the moment the program decides to read the socket there is no data available it will be
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normally blocked in the kernel until the data become available. That means losing time and
system resources waiting for incoming information, so that blocking behaviour is
unacceptable. Using the e) facility provided by the fcntl function we avoid the situation
where the process makes a read request and blocks, then it will be unable to process the
information that it has already on the buffers. So a deadlock would occur if the system
spends all the time waiting, or otherwise we have to be constantly checking the socket to
know if there is some new information to be read.

5.2.4    Facilities borrowed from OS for the management of Descriptors

For the reason that we have seen above, we are going to look at the subsequent features from
the system:

¾ polling I/O, this facility is done with the select system call

¾ non-blocking I/O, the operations in the non-blocking descriptors complete
immediately, partially complete an input or output operation and return a partial
count, or return an error that shows that the operation could not be completed at all.
(We have implemented this feature in the module for sending the messages)

¾ signal driven I/O, The descriptors which have the signalling enabled cause the
associated process or process group to be notified when the I/O state of the
descriptor changes. (We have already implemented this feature in the reception
module)

There are four possible alternatives [21] to avoid the blocking problem when the descriptor
is not ready to be read or written. Thus it is necessary to know all of them to decide which
one is most suitable for our purpose.

¾ To set all the descriptors into non-blocking mode. The process can then try
operations on each descriptor in turn, to find out which descriptors are ready to do I/O. The
problem with this approach is that the process must run continuously to discover whether
there is any I/O to be done. Thus this option has been discarded in the implementation,
because it is waste of time checking every fixed interval of time whether there is any socket
ready to obtain the data, and we also would need a stable mechanism to inspect the socket
currently, so we will use a system signal to interrupt the program to check whether is data
waiting or not, and return to the normal program course.

¾ To enable all descriptors of interest to signal when I/O can be done. The process
can wait for a signal to discover when it is possible to do I/O. The drawback to this approach
is that signals are expensive to catch. Hence, signal driven I/O is impractical for applications
that do from moderate to large amounts of I/O. However, in the SCSP protocol we only use
one socket to receive all the data, through the same port which is pre-configured at the
beginning of the implementation. Thus we only have to mange a single socket, and
afterwards the data that we receive is driven to the corresponding FSM which will manage
the data according to the protocol state and premises.

¾ To have the system provided with a method for asking which descriptors are
capable of doing I/O. If none of the requested descriptors are ready, the system can put the
process to sleep until a descriptor becomes ready. This feature is implemented using a
library function named select. The drawback is that the process must do two system calls per
operation: one to poll for the descriptor that is ready to do I/O and another to do the
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operation itself, so we also have discard this option, because we have to leave the process
sleeping if there is no data ready. In this way we waste time and system resources, waiting
for data available in the socket while the rest of the program could process the data allocated
in a buffer.

¾ To have the process notified by the system of all the descriptors that the process
is interested in reading, and then do a blocking read on that set of descriptors. When the read
returns the process is notified on which descriptor the read completed. The benefit of this
approach is that the process does a single system call to specify the set descriptor, then loop
is doing reads[22].

5.2.5  Descriptor Implementation in SCSP development

The first approach is the non-blocking I/O. It typically is used for output descriptors,
because the operation typically will not block. Rather than doing a select which nearly
always succeeds, followed immediately by a write. It is more efficient to try the write and
revert to using select only during periods when the write  returns a blocking error. Thus, we
use this first approach in the function envia() to send the data to the rest of DCS s in the SG.
In the case that the call does not succeed it is not a big problem because the protocol
specification take care of those inconveniences and after a period of time the same message
will be sent again. So it is better than block the program when it has a new message to send
and it fails trying to achieve this goal. This descriptor gives us the facility to avoid blocking
the program while it is trying to send data. The descriptor of the envia() function is shown
in Figure 16. In the figure we can see the behaviour of the program when the function
envia() is called to send the data.

bool  envia(int &,char *,char *,int &)
This function is used  to send the messages  in  every  place where the protocol is running at  this moment,
It is  a generic function  to  catch the packet  and  send  it  to the address which we give the function when it
is called, use a non-blocking socket  to avoid stopping the rest of the protocol on its normal functions.

fcntl(sockfd, F_SETL, O_NONBLOCK)

main(){

form(message)
envia(message,address)

functions module
envia( message,address ) {

}/*end  envia()*/

}/*end  main/*

(returns “ true” on success)

Fig. 16.Description of the function envia() and how it is embedded in the main program

Afterwards, if the envia() function does not succeed it returns without any delay, instead of
trying to send the data again using the slect call. With the select alternative it means that the
program has to stop and wait for this new attempt to send the data with select and it could be
possible that in this moment we have data in the buffer to be processed.
The select interface takes three masks of descriptors to be monitored, corresponding to
interest in reading, writing, and exceptional conditions. In addition, it takes a time-out value
for returning from select if none of the requested descriptors becomes ready before a
specified amount of time has elapsed. The select call returns the same three masks of
descriptors after modifying them to show the descriptors that are able to do reading, to do
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writing, or to provide an exceptional condition. If none of the descriptors has become ready
in the time-out interval, select returns showing that no descriptors are ready for I/O.

The second approach is available as signal-driven I/O. It is typically used for rare events,
such as for the arrival of out-of-band data on a socket. For such rare events, the cost of
handling an occasional signal is lower than that of checking constantly with select to find
out whether there is any pending data. Thus, this is the system feature that we choose to
achieve the goal of an efficient and rapid data management when it arrives to the host or
server. Thus, the goal we want to achieve is to store the data without spendding too much
time with memory reservation and reallocation because when the data arrives the signal
handler only have to use the system call receivefrom() to store the data coming in a
character array, the address of which is allocated in a global buffer. Afterwards, it will be
visible for the rest of the program when the handler returns from the signal call. This
mechanism is reflected in Figure 17. The figure details the data management when data
arrives from the other DCS to the I/O port of the LS.

Packets management in reception:

Function  description:

Bufer<dato_bufer>buferet()

While the program is running  in  normal  way. An interruption is received  in the port used  by  the protocol’s
 communications, the call  is handled by  the  manejoint()    function which catch the data and insert it in the Bufer
  where can it be read by the  protocol

main(){

incoming
data

 Port   I/O
interruption
generation manejoint(){

e f g h i

dato_bufer

remite

mensaje

len

pon

} /* main end*/

}/*end  interr.*/

program
   stop

program
contin.

incoming
data

Fig. 17, Data management from the I/O port to the data buffer with the interruption handler

In this cyclic buffer which we will describe later in more detail we only manage the address
of the characters array. In the buffer the data is stored, instead of making a new memory
reservation and moving the whole block of data that has just arrived to that new amount of
memory. Hence, we only put the first memory allocation address in the cyclic buffer and
later when the program needs to process the data, it only has to read from the buffer the
memory address and work over this data. Consequently, the data is not moved to any other
place, avoiding the corresponding system resource reservation and reallocation, to store the
identical data twice. This is the first rule in a network protocol implementation[20] we have
to avoid copying data from one buffer into another. If a protocol adheres to this the
implementation will probably be quite efficient. The reason is that copying data implies a
loop that loads every word of one buffer into a CPU register and then stores it back to
another memory location. In a sense, we should think in our computer’s bus as the last
physical link of the network and we have to manage this resource carefully. The result of
this discussion is that it is critical that the message operations not touch the data in a
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message, but rather only manipulate pointers. Thus the solution recommended and we have
adopted in our reception module when we receive the message rather than allocating a new
memory buffer and copy the bytes from the first message into that buffer we store the
address of this first allocation in our cyclic buffer named buferet.

5.3    Communication module

This is the other half of the protocol skeleton, because all the transactions have to be
managed by this module. It is fragmented in two parts; The function which take care of the
sending task, and the part which have to receive the packets and allocate them to the Buffer.

The former part, is achieved by the definition of the envia() function. And the latter is the
most important and is embedded in the protocol body itself.

The envia() function is implemented as an individual function that can be called from
anywhere in the program. It acts like a stand alone function, it means that to send a packet it
only need to receive the address of the data where is the packet sent to and the port it can
use for its purpose. Afterwards, the function takes care of the socket reservation which is
fixed like a non-blocking socket to avoid stopping the program. In the worst case that the
socket is not available, it returns without send any message, and this message will be lost.
Trying to minimise that problem we have Timers functions to resend a new packet in case
the program did not receive any message in the corresponding time interval. Thus, we can
solve this inconvenience without stopping the protocol or bind it in a imprecise cycle
waiting for a free socket.

Subsequently, we are going to describe the internal details used to implement the envia()
function. It includes the OS facilities provided by the system.

5.3.1    OS Characteristics

The basic building block for the communication is the socket. A socket is an endpoint of
communication to which a name may be bound. Each socket in use has a type and one or
more associated processes. Sockets exist within communications domains. A communication
domain is an abstraction introduced to bundle common properties of processes
communicating through sockets. TCP/IP socket programming can be seen as a way of
writing programs that can separate the client from the server in a platform-independent
manner. When we are working directly with socket based protocols we can send commands
from the client to the server, thus implementing an application-specific protocol. The
programmer needs to know the protocol and construct commands that are sent to the server
through a socket connection. Upon command completion, the server generally replies using
the same protocol.
The client server socket communications is not very difficult to implement, but it is tedious
and requires quite a bit of code. When handling more complex tasks, the protocols generally
get more complex and programming the protocol handling becomes more difficult.

Sockets normally exchange data only with sockets in the same domain (it may be possible to
cross domain boundaries but only if some translation process is performed).
There are three separate communications domains:

UNIX domain, for on-system communication.
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Internet domain, which is used by processes which communicate using the DARPA
standard communication protocol.

NS domain, which is used by processes which communicate using Xerox standard
communication protocols.

In the SCSP implementation we use the Internet Domain socket for our purpose.

5.3.2  Sockets for communications programming

Regards the type field, the sockets are typed according to the communication properties
visible to a user. The processes are presumed to communicate only between sockets of the
same type. Are currently available Four types of sockets:
 1. Stream, 2. Datagram, 3. Raw, 4. Sequenced packet

1) A stream socket provides for bi-directional reliable, sequenced, and unduplicated
flow of data without record boundaries.

2) A datagram socket supports bi-directional flow of data which is not promised to
the sequenced, reliable or unduplicated. That is, a process receiving messages on a
datagram socket may find messages duplicated, and possibly in an order different
from the initial order in which it was sent. An important characteristic of a datagram
socket is that record boundaries in data are preserved. Datagram sockets closely
model the facilities found in many contemporary packet switched networks such as
the Ethernet.

3) A raw socket provides users access to the underlying communication protocols
which support socket abstractions. These sockets are normally datagram oriented,
though their exact characteristics are dependent on the interface provided by the
protocol. Raw sockets are not intended for the general user.

4) A sequenced packet socket is similar to a stream socket, with the exception that
record boundaries are preserved. Sequenced packets allow the user to manipulate
the SPP or IDP headers on a packet or a group of packets either by writing a
prototype header along with whatever data is to be sent, or by specifying a default
header to be used with all outgoing data, and allows the user to receive the headers
on incoming packets.

5.3.3    SCSP communications framework

In the SCSP implementation we choose the Datagram socket for the communications
because despite its unreliable packets delivery, it performs a faster communications method.
Since our purpose is to achieve an efficient and quick synchronisation of the cache
information it is the most suitable option for the communication block. A datagram socket
provides a symmetric interface to data exchange where there is no requirement for
connection establishment, instead each message includes the destination address.

To start operation we have to make a system call for a free socket which we can use for the
message transactions. On this request the system creates a socket in the specified domain
and of the specified type. A particular protocol may also be requested. If the protocol is left
unspecified (a 0 value), the system will select an appropriate protocol from those protocols
which comprise the communication domain and which may be used to support the requested
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socket type. The user is returned a descriptor (a small integer number) which may be used in
later system calls which operate on sockets.

The domain is specified as one of the constants defined in the file <sys/socket.h>. For the
UNIX domain we have AF_UNIX , for Internet domain is AF_INET  and for NS domain
AF_NS. The socket types are also defined in this file and one of the SOCK_STREAM,
SOCK_DGRAM, SOCK_RAW or SOCK_SEQPACKET must be specified.

Thus to create our particular socket we make this system call with the options of AF_INET
domain and SOCK_DGRAM  type, we leave the protocol option open and the system will
select the best according its criteria. However, it is possible to specify a protocol other than
the default.

 int sockfd= socket(AF_INET, SOCK_DGRAM,0)

There are several reasons a socket can fail. Aside from the occurrence of lack of memory
(ENOBUFS), a socket request may fail due to a request to an unknown protocol
(EPROTONOSUPORT) or a request for a type of socket for whcich there is no supporting
protocol (EPROTOTYPE).

A successful call will result in a datagram socket being created with the UDP protocol
providing the underlying communication support.

5.3.4    SCSP over IP

Actually, many popular network applications have been built on top of TCP and UDP over
the past decade. These have helped the Internet services and protocols to become widely-
spread de facto standards. In the past few years the ISO and CCITT have defined a well-
architected set of upper layer standards which include connection-oriented and connection-
less session, presentation and application layer services and protocols. These OSI upper
layer standards offer valuable services to application developers (e.g. dialogue control,
transfer syntax, peer authentication, directory services, etc.) which are not currently offered
by the TCP/IP standards. The SCSP is defined as an Draft Standard but the aim of this work
is go beyond this standard and convert this Synchronisation Protocol into a valuable service
for developers of other protocols. In that way the SCSP becomes in a connection-less
session protocol, that can be used at the same level with other protocols or in upper level
services.

The most important reason to choose the UDP protocol in our communications framework is
the desirability to offer the OSI upper layer services directly in the Internet without
disrupting existing facilities. This permits a more graceful convergence and transition
strategy from IP-based networks to OSI-based networks in the future. Thus, in the SCSP we
use the approach of RFC 768, that specifies how to offer OSI connection-less transport
service using the User Datagram Protocol of the TCP/IP suite.

As a result, the SCSP packets can be delivered across the Internet. Thus the upper layers can
operate fully without knowledge of the fact that they are running on top of UDP/IP.

It is observed that in the connection setup and tear-down protocol exchanges and complex
connection-oriented processes take place. Those transactions create unnecessary overheads
for a simple request/response exchange among the servers of the synchronisation group.
Especially in reliable communications environment such as LAN and ISDN.
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The OSI connection-less upper layers are thought to be highly effective and efficient both in
time and space, for the distributed application classes.
Nowadays, the stability , maturity and wide availability of UDP/IP are ideal for providing
solid connection-less transport services independent of actual implementations.

Thus among the servers we can implement a “request/response” application where the most
prominent aims are quick transactions and reliable behaviour of the synchronisation service.

Using the UDP transport system the servers can communicate with each other using
connection-less transport provided there is pre-arranged knowledge about each other (e.g.
protocol version, formats, options, … etc.), since there is no negotiation before data transfer.
During initialisation of the SCSP each server reads the basic data from a configuration file
which contains the packet size and the port number. Before starting the synchronisation
process that data must be agreed in common knowledge by the whole group. Afterwards,
each server passes a message to its neighbours, that receive the message. Then, a sequence
of interactions between servers described by the connection-less primitives will take place to
achieve the final database synchronisation.

5.3.5    UDP for SCSP communications

This protocol provides a procedure for application programs to send messages to other
programs with a minimum of protocol mechanism. The protocol is transaction oriented so
delivery and duplicate protection are not guaranteed.

❏ General UDP architecture:

Format:
In Figure 18 the structure of the UDP packet is depicted.

UDP  packet Header
Source Port Destination Port

Length Checksum

Data octets …………………………..

0                            7, 8                      15,16                                                   31

Fig. 18, UDP Packet header format

Fields:
Source Port is an optional field. When meaningful, it indicates the port of the

sending process. It may be assumed to be the port to which a reply should be addressed in
the absence of any other information. If not used, a value of zero is inserted.

Destination Port has a meaning within the context of a particular Internet destination
address.

Length is the length in octets of this user datagram including this header and the
data  (this means the minimum value of the length is eight).
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Checksum is the 16-bit one’s complement of the one’s complement sum of a pseudo
header of information from the IP header, the UDP header and the data padded with
zero octets at the end (if necessary) to make a multiple of two octets.

The pseudo header conceptually prefixed to the UDP header contains the source address, the
destination address, the protocol and the UDP length. Those parts are described in
Figure 19. This information gives protection against misrouted datagrams. This checksum
procedure is the same as is used in TCP.

UDP  packet Header
Source    address

Destination     address

Zero UDP lengthProtocol

0                           7, 8                      15,16                                                     31

Fig. 19, UDP pseudo header structure

If the computed checksum is zero, it is transmitted as all ones (the equivalent in one’s
complement arithmetic). An all zero transmitted checksum value means that the transmitter
generated no checksum (for debugging or for higher level protocols that do not care).

❏ UDP in SCSP implementation:

Another part of the UDP specification is the user Interface.
A user interface should allow the creation of new receive ports and receive operations on the
receive ports that return the data octets. It also indicates the source port and the source
address and an operation that allows a datagram to be sent. It specifies the data source and
destination ports and destination address. In our case the configuration module takes care of
the ports assignment and the interruption function bound to the reception port will check the
data available on the port. This function will insert it in the buffer to be processed
afterwards by the FSM. In the other side is the function envia() which manages the data and
the address where the next packet will be sent.

The latter part is the IP interface.
The UDP module must be able to determine the source and destination Internet addresses
and the protocol field from the Internet protocol header. One possible UDP/IP interface
would return the whole Internet datagram.

Such an interface would also allow the UDP to pass a full Internet datagram complete with
header to the IP for sending. The IP would verify certain fields for consistency and compute
the Internet header checksum.

In the above description we have defined the socket through the system call socket and a
connection-less communication is achieved. In the UDP user Interface specification defined
above, we have to bind the socket obtained to some address and port.

Hence the second step is to bind the socket to a fixed port and name that we receive from the
protocol specification RFC. Initially a socket is created without a name, so until a name is
bound to a socket processes have no way to reference it and consequently no messages may
be received on it. Communicating processes are bound by an association. In the Internet and
NS domains an association is composed of local and foreign address and local and foreign
ports. In most domains, associations must be unique. In the Internet domain there may never
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be duplicate <protocol, local address, local port, foreign address, foreign port> tuples.
Thus the bind system call allows a process to specify half of an association <local address,
local port>

❏ OS calls for communications module

The system call for binding an address to a specific socket is as follows.

bind (socket, name, name_length )

And our particular system call is:

bind(socfd,(struct sockaddre *)&myaddre, sizeof(myaddr))

The bound name is a variable length byte string which is interpreted by the supporting
protocol. Its interpretation may vary from communication domain to communication domain
(this is one of the properties which comprise the domain). As mentioned, in the Internet
domain names contain an Internet address and port number. To aid in the task to locate and
construct network addresses in a distributed environment, there are a number of routines that
have been added to the standard C run-time library that works over the OS. These routines
are provided for mapping host names to network addresses, network names to network
numbers and service names to port numbers. In this case the file <netdb.h> must be
included when using any of these routines.

One of those structures is struct sockaddr_in. This structure holds socket address
information for Internet. If we want to translate the program for another architecture, we can
choose the strucut sockaddr that is available for many types of sockets.

int sockfd;
struct sockaddr_in myaddr;

myaddr.sin_family=AF_INET;
myaddr:sin_port=htons(port);
myaddr.sin_addr.s_addr=inet_addr(address);
bzero(&(myaddr.sin_zero),8);

This structure makes it easy to reference elements of the sockets address. The field sin_zero
is included to pad the structure to the length of a struct sockaddr and it should be set to all
zeros with the library function bzero(). The sin_family field is filled with the type of domain
we have seen in the section 5.3.3. The sin_port holds the port number that we will use in the
protocol and we read it from the configuration file at the beginning of the protocol
functions. Finally, the sin_addr where we insert the IP address in the Network Byte Order,
and also the port number must be in Network Byte Order. For that conversion we can use
the function htons() and inet_addr() to convert the IP address in number and dots notation
into an unsigned long number with Network Byte Order. It is necessary because due to the
protocol specification the address must be stored in character format. Thus, in the Internet
case we use the numbers and dots format, and in case of another system should change all
this conversions according to the platform which we have to use). Thus finally we have
filled the structure to bind the socket to the right address and port.
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To make the envia() function non-blocking, once the socket has been created via the socket
call, we use the function fcntl()  as follows.

fcntl(sockfd, F_SETFL, O_NONBLOCK)
or
fcntl(sockfd, F_SETFL,FNDELAY)

With this function we can manipulate and perform miscellaneous operations on the socket.
With the argument F_STFL we set the descriptor’s flags to the value specified by the third
argument. In that argument we have FNDELAY or O_NONBLOCK, in fact both of those
values are bit masks which fix the socket flags to the non-blocking state in the file descriptor
system.

In the reception module, following the same directive in the whole implementation, we try to
avoid suspending the protocol process for waiting any incoming message. For that purpose
we use several features from the system like signal management and the already described
fcntl() function with different options.

The UNIX system defines a set of signals for software and hardware conditions that may be
delivered to a process such that they can arise during the normal execution of a program.
Signals are modelled after hardware interrupts, but in the sense that they are designed to be
software equivalents of these hardware interrupts or traps. A process may specify a user-
level subroutine to be the handler to which a signal should be delivered. Signals are posted
to a process by the system when it detects a hardware event, such as an illegal instruction, or
a software event such as a stop request from the terminal. When a signal is generated it is
blocked from further occurrence while it is being caught by the handler.

Catching a signal involves saving the current process context and building a new one in
which to run the handler. The signal is then delivered to the handler, which can either abort
the process or return to the executing process. If the handler returns, the signal is unlocked
and can be generated and caught again.

Alternatively, a process may specify that a signal is to be ignored or that a default action as
determined by the kernel is to be taken. The default action on certain signals is to terminate
the process. This termination may be accompanied by creation of a core file that contains
the current image of the process for use in post-mortem debugging. This is very useful when
we use the gdb debugger to fix problems during the program implementation.

Some signals cannot be caught or ignored. These signals include SIGKILL which kills
runaway processes and the job-control signal SIGSTOP.

In POSIX system calls interrupted by a signal may cause a system call to be interrupted and
terminated prematurely and an “interrupted system call” error to be returned. The sigaction
system call can be passed a flag that requests that system calls interrupted by a signal be
restarted automatically whenever possible and reasonable. Automatic restarting of system
calls permits programs to service signals without having to check the return code from each
system call to determine whether the call should be restarted. In our application we use the
C-library routine signal() to set up the signal handler for the I/O interruption. The signal()
routine calls sigaction with the flag that requests that system calls are restarted.

The SIGIO signal provided by the system allows a process to be notified via a signal when a
socket (or more generally a file descriptor) has data waiting to read. The use of the SIGIO
facility requires three steps:
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¾The process must set up a SIGIO signal handler by issuing of the signal or sigvec
calls. It is accomplished with the next function.

void manejoin(int);

We allocate this definition at the beginning of the protocol implementation to be
available from everywhere in the global process. The same attributes are established
for the socket definition because it must be available for the interruption handler in
every moment.

¾ Secondly, the process identifier which have to receive the notification must be set
pending for that event. It is accomplished with the use of an fcntl function call.

if (fcntl(sockfd, F_SETOWN,getpid())<0){

¾ Finally, we must enable asynchronous notification of pending I/O over the socket
with another fcntl call.

if (fcntl(sockfd, F_STFL,FASYNC)<0){

With this sample code we allow a given process to receive information on pending I/O
requests as they occur at a socket socfd. With the SIGIO signal each socket has an associated
process number. This value is initialised to zero, but may be redefined at a later time with
the F_SETOWN option in the second argument of the fcntl function as we have done in our
particular code for the messages reception. To set the process identifier for the socket
positive arguments should be given to the fcntl call. A similar fcntl F_GETOWN is available
for determining the current process number.

As a result, we have defined the major part of the whole code to receive any message
without interfering the functionality and performance of the protocol. The signal handler has
to take care of the incoming message in the socket when receiving the system call, which
indicates that there is a message ready. Now, we show this handler.

Void manejoin(int);

Waiting for the SIGIO signal, with the function;

signal (SIGIO, manejoin);

And inside the handler body, we implement the code that will take the message from the
socket, with the system function;

numbytes=recvfrom(sockfd,buf,MAXBUFLEN,0,struct
sockaddr*)&their_addr, &tam1));

The recvfrom() function will manage the data inserted in the characters array named buf by
the latter function with an additional structure used for that purpose, to preserve the
independence of the reception function from the rest of the program and maintain the
maximum information of the message and sender available to be processed.

dato_bufer dato;
dato.mensaje=buf;
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When we have data in the temporary structure dato_bufer we insert that information in the
buffer buferet. Then the signal handler can return from its call to the last position in the
program that it left when the signal iterruption was received.

buferet.pon(dato);

The buferet has been defined like a global entity to allow its management from the signal
interruption handler and also from the rest of the protocol. Thus it is reachable when any
protocol function decides to access to any new packet that have been allocated in its storage
area to be processed. The basis of the buferet implementation is described below in the
Buffer description.

5.4    Protocol data structure

In this section we describe the data structures used in the implementation. All those
structures are based on the MIB definitions [19]. In this way we make it easier to manage
the protocol through the SNMP requests. We will also analyse the basis of the MIB
specifications and the ASN.1 notation used for those definitions.

5.4.1    MIB objects

In the late 1980’s the Internet Architecture Board (IAB), felt that it should form a group to
develop tools, protocols a common database for general network management. As a result of
this, the Simple Network Management Protocol (SNMP) was born for TCP/IP with
considerations based on the framework of the OSI model (RFC 1157). There are three basic
concepts; The manager the agent and the management information base (MIB)

SNMP has its own monitor and control functions using transport devices to move
information between the management station and the station being managed. As far as
programming is concerned the manager is a client running on the management station and
the agent is a server running on a network application program whose job is to collect data
and interact with the manager. The manager and the agent use UDP services on the network
to exchange messages. The database created on the network element is known as a view of
Management Information Base (MIB), which contains objects in a tree structure (RFC
1156).

For that reason, first of all we have to adapt our work to the SNMP requirements for the
management information. It allows its inspection or alteration of any network element by
logically remote users. In Management objects for SCSP [23] the structure of the
management information base for the objects needed in the SCSP is described. This
document provides a simple workable architecture and system for managing TCP/IP based
internets and in particular the Internet.

The Internet activities Board recommends that all IP and TCP implementations be network
manageable. This implies the implementation of MIB, and at least one of the two
recommended management protocols SNMP (RFC 1157) [24] or the CMIT (RFC 1095)
[25].
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5.4.2    SNMP framework

SNMP is a full Internet Standard and CMIT is a draft standard. For this reason in our work
we have tried to adapt our implementation to the SNMP specifications. This architectural
model is a collection of network management stations and network elements. The network
management stations execute management applications which monitor and control network
elements. The network elements are hosts, servers, gateways and terminals which have
management agents. Those agents are responsible for performing the network management
functions requested by the network management stations. The SNMP as we have already
mentioned, is used to communicate management information between the network
management stations and the agents. The SNMP explicitly minimises the number and
complexity of management functions performed by the management agents. Those functions
can be easily used by developers of network management tools. That has been an important
motivation in following the management objects definition for the SCSP.

We have tried to implement the objects closely following the definitions in the paper [23] to
obtain a functional code for monitoring and controlling every event which happens on the
network. It is also extensible to accommodate additional possibly unanticipated aspects of
the network operation and management. Another goal is that the protocol implementation
should be, as much as possible, independent of the architecture and mechanisms of
particular hosts or gateways.

To achieve this objective each FSM that implements a sub-protocol has access to these
objects, and their values are constantly updated by the protocol on its normal task while the
synchronization is taking place.

The scope of the management information communicated by the SNMP is exactly
represented by instances of objects defined in Internet-standard MIB or defined elsewhere
according to the conventions set forth in Internet-standard SMI. The support of aggregate
object type in the MIB is neither required for conformance with the SMI nor by the SNMP.
The management information communicated by operations of the SNMP is represented
according to the subset of the ASN.1 notation, that is specified for the definition of non-
aggregate types in SMI.
Figure 20 depicts LS and DCS data interactions with the SMI specifications. These
definitions are used to implement the SG and the pertinent DCS tables to perform an Open
System protocol. Hence the protocol follows the SNMP requirement to be managed through
a Proxy agent.

L S
scsp S erv er
G ro u p T ab le

(S M Iv 2)

scsp D C S
T ab le

(S M Iv 2) (S M Iv 2) (S M Iv 2)

scsp D C S
T ab le

scsp D C S
T ab le

S ta te :D o w n

D C S

D C S

D C S

Fig. 20, LS and DCS data structures based on SMI definitions
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The SNMP models all management agent functions as alterations or inspections of
variables. Thus, a protocol entity on a logically remote host interacts with the management
agent resident on the network element in order to retrieve (get) or alter (set) variables.

The SNMP embedded in the SCSP definitions
The idea of our class definitions arose from the purpose of a later development of tools that
support the easy implementation of protocol handlers defined using ASN.1. Such tools read
in an ASN.1 type definition and map it into an incore data structure(using the C++
language) which is capable of holding values of that type. Due to this way of implementing
the SCSP protocol, we can develop an additional program that would be able to write to the
incore data-structure to generate (in this local format) the value to be transmitted. Invoking a
run-time routine provided by the tool would encode this value into the corresponding packet
ready for transmission. The process is reversed on reception. This tool makes the mapping
of the value of any ASN.1 type into an indefinitely large memory with dynamic memory
allocation and with a known word-size (16 bits, 32 bits or 64 bits). To give an example, if
the element is Boolean or an integer the word holds the element. If the element is a variable
length character string, the word holds a pointer to a block of memory containing the string.
The resulting structure is a strict tool that provides a more programming-language-friendly
interface to ASN.1 style SNMP messages (Get request, Get Next Request, Set Request, Get
Response, Trap) sent from the manager.
This kind of interaction between the program modules and the data structures that follow the
SN.1 notation is shown in Figure 21.

HELLO
PROTOCOL

CACHE
ALIGNMENT
PROTOCOL

CACHE
STATE
UPDATE
PROTOCOL

SCSPSCSP

Proxy
Agent

OBJECTS
TABLES

MIB objects based on ASN.1 to allow  proxy agent management

All the modules  have been implemented  in generic   classes (C++)

Fig. 21, Interaction between Proxy agent and SCSP through MIB objects

When the manager requires information from the MIB, it translates the information in our
objects which are constantly updated by the protocol in ASN.1 messages format. The
manager retrieves the information solicited through the corresponding port using UDP calls.
All the request and response messages are transmitted or received via UDP calls using the
port number 161. The Traps are unsolicited messages. It means that after a special event has
occurred on the station being managed, the agent sends a Trap message to its manager to
report the incident. Thus, when a trap is desired, a message is transmitted or received
through port 162 with a UDP call.
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An example of those data structures borrowed from the SMI specifications is shown in
Figure 22. In that Figure we can see the objects used by the HFSM and how they are
updated in the normal functions of the protocol. In this way the FSM structures are based on
the ASN.1 guidelines to accomplish a portable protocol available through the SNMP
mechanisms. The same characteristics are adopted by the rest of the FSMs in the SCSP
development.

LS

scspServer
GroupTable

scspDCS
Table

DCS

Hello Finite State Machine (  HFSMclass )

Send  Hello messages
Start Hello Timers (  TimeHelloInt, timeHelloRec)

scspServerGroupID

scspServerGroupPID

scspLSID

scspLSHelloInterval

scspLSDeadFactor

scspDCSID

scspDCSHFSMState

scspHelloIn ++

scspHelloOut ++

scspDCSHelloInvalidIn ++

scspDCSDeadFactor

scspDCSFamilyID

HFSM

Check DCS State ( Down, Waiting, Uniconn, Biconn   )

Fig. 22, Data modules used in the HFSM

5.4.3    Packet structures

The message abstraction can be represented as a byte string of some length. For the purpose
of our work, we use the message structure as an abstract string composed of different parts
which depend on the protocol that is forming the message. The operations on the message
object can be viewed as string manipulations. Hence, while processing an outgoing message,
each of several protocols or in this case the FSMs, may add data to the message. Thus
different strings are concatenated until  the final message is ready. For incoming messages
the process will be the other way around the message will be fragmented in various packets
or data structures to be processed. Depending on which FSM has to manage the packet, it
will strip the headers and the strings will be removed from the front of another string. Each
FSM may save references to portions of a message for future use or to make the next
decisions in the process.

Thus, any given byte may be attached to several different strings, removed from several
different strings and referenced by several different HFSM states. For all those processes we
manage the data obtained directly from the reception module which allocates the data in a
character array. Its address is stored in a global buffer which is reachable from every part of
the protocol.

From the programming viewpoint we choose basic structures for the data storage related to
the program language characteristics. Thus we use Bitfileds for the packet structures
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definitions [26] instead of unions technique because with this technique the code executes
very fast and on some machines, the assembly code from this function may be smaller in
size. The problem is that unions are not always portable due to the way that different
processors store the bytes in memory. The same version of one program for instance runs
correctly on “Intel” processors but displays bytes in reverse order on “SPARC” based
workstations. For that reason, we would have to implement some preprocessors statements
to identify the machine we are using and it may make the program complete and unreadable.
Hence, we choose the Bitfields implementation.

5.4.4    Cache structures

For the cache implementation we have borrowed the structure of the OSPF cache format.
Thus, we make it more reliable and similar to a well known routing table definition. The
functions and data structures used in the cache are described in Figure 23. We can
synchronise any type of data depending on the protocol that will use SCSP.

Type of  different  database  records :

The data structures are  independent of the SCSP  implementation

We can use many different kind of data to be synchronized

DATA  BASESDATA  BASES

OSPF Record

Origin Type
Origin Identifier
Destination Type
Destination Identifier
Address mask
Type of Service
Area
Path Type
Cost
Origin Link State
Next Hop  Identifier

ATMARP Record

Type of Hardware address
Type higher layer protocol
Length of hardware address
Length higher layer address
Operation code
Sender hardware address
Sender IP address
Target hardware address
Target IP address

Fig. 23, Different data that can be stored in the Cache “ class”

This is implemented in a separate class class.cpp to make it more independent from the rest
of the SCSP protocol. This information must be used by the SCSP program and the protocol
which is running with it and will make use of the SCSP facilities for its database
synchronization. This implementation is needed because both of them will access client the
same data. To avoid future interactions we make use of an additional data structure
list_CSA which has the same information as the cache.

In Figure 24, we can see the most important structures used to manage the data stored in the
cache. In the same figure there are the complementary functions to transmit the information
from the cache to the protocol that will process the data.
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Template class Bufer<>  Used to implement a struct  which  behaves as  an interface  between
      the protocol  and the cache data (in  list_CSA) used in the synchronization . Each party  can 
     be  modified  separately  without  interacting  with the other. The struct  used  to store the data in  
     the Bufer  is  dato_cache that  actually  only  is  formed  by  a CSAS_Record struct, but  it can
     be extended  with  complementary elements, with some  modificatons in  the dates.cpp   file.

Bufer<dato_cache>CRL(size)

struct dato_cache{
CSAS_Record   Record;}

list_CSA   is an array of  pointers  of CSA_records, which  is  filled by  the Cache
     when  the protocol  is started, using  the Cache function: Cache.Form_list_CSA().
     Thus, the synchronization  protocol  runs independently of the main protocol, 
      which is  using  the cache data without interruptions. 
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Fig. 24 Cache definitions and management process

5.4.4.1    DCS list on each machine

The first step in the protocol execution is to read the basic information from a configuration
file. It must be allocated in the same directory where the protocol is running. Otherwise, we
can read the file location from the standard input (from the keyboard buffer). It allows the
user to manage the initial information. In this initial file there are the port number used for
the message transmissions needed to fill the tables (based on the MIB objects) for the FSM.
Those values, may be updated either by the results program or by the program which
represents the SNMP agent. We have defined an individual class to take care of all these
tasks. This class is represented in Figure 25. In this figure we can see that there are three
functions which return the required values that the protocol needs to start its operation.

Provide an auto-configuration service

Read data from external   files:
config. txt
hosts

Fill one data structure
data_ini:

adressa

HelloInt

DeadFact

FamID

DCSAReInt

DCSCSUSReInt

DCSCSUReInt

DCSCSAMaxRe

CSAReDepth

Functions:
Config_readport()
Config_readelem()
Config_readdata()

Returns the Port  number  used  in the protocol
Returns the  number  of  servers in  the group (DCS’s + LS)

Returns  an array withdata_ini elements  to fill  the  object  table of each DCS

Fig. 25, Configuration class and internal functions
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From these files we form the array with the addresses of all the servers which compose the
SG. During the program implementation, we have tried to follow a modular way of working,
and in Figure 26 we can see that in the configuration module this is also the case.
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The configuration data is read from text files

Configuration  information independent  from Protocol Algorithm

Fig. 26, Configure module behavior

5.4.4.2    Buffer implementation

The buffer is an important structure in the program because it takes care of the data storage
and memory allocation. An efficient buffer implementation helps with an efficient program
behavior. For that reason, we have chosen a template definition to allow every type of data
to be allocated in the same buffer. In this way, we have defined an independent class with its
own functions for the data management from external requests. For the practical
implementation we use a FIFO structure with a slight difference. The buffer acts like a
cyclic structure. With this characteristic we obtain a useful module which can allocate any
kind of data in the same space of memory without future buffer expansion or constrains. It
avoids the reservation of a large amount of memory when new space is required. The
characteristics of the buffer implementation are shown in Figure 27.

T em plate  c lass:Bufer< >

Tem porary B u ffer: B ufer< dato_bufer> bu feret(num );

C SA  R equest L ist:B ufer< dato_cache> C R L(num )

Bufer() im p lem entation : circu lar bu ffer)

num

num

pon extrae

a b c d e f g h i

extrae

erro r: fu ll  signa l

pon

norm al   function :

Fig. 27  Buffer Implementation
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With the circular buffer we are reusing always the same space with the condition that the
program is extracting the data from one side while the communications module is inserting
the data that is being received in the other side. To avoid any collision between both
components the extracting function have to check if the buffer is empty or not before
picking up the data from the buffer. In the case that the protocol takes too much time for
processing the message process and the communications module is continuously receiving
packets which has to insert in the buffer an overflow in the buffer could be possible. This
problem is solved by the inserting function that will check the space available on the buffer
before inserting the new message. If there is no free space it will drop all the next messages
that will arrive in the subsequent time interval. Thus, it could insert new data only after the
program has extracted a message for processing and made some space available.

The same structure is used for other functions with the same characteristics like the CSA
Request List (CRL).

5.4.4.3    CSA Request List (CRL)

The buffer definition of the previous section is also used for the CRL implementation. This
structure contains a list of those cache entries which are more up to date in the DCS than the
LS’ s own cache. The CRL is filled from the data summaries which are composed by the
protocol in the first step of its operation with the cache data. After the summary exchange
step, we have in the CRL list the actual information that are in the cache or database when
the protocol starts.
After that the SCSP have to check if its data is the same than in the rest of the DCS caches
and update it in case that it is different. For that purpose, different message transactions take
places according to the Hello Protocol or Cache Alignment Protocol. When the cache is
aligned, the CRL will be filled with new CSAS Records from the data that have to be
updated in the cache. Thus, the CRL acts like a buffer that stores the information summaries
of the data that have to be updated. In the CRL, the protocol checks if there is any new
information that needs to be refreshed in its own cache. The structure is depicted in
Figure 28 showing the process of inserting the data in the CRL and extracting the data that
has to be sent with the envia() function.

Public functions for theCSA  Request  List (CRL)  management

bool CRL_empty() Check if the CSA list is empty or  not

Obtain_CSAS()      This  function  extract  the CSAS_Records  from  the CRL
        to form the correspondent  CA  message

Bufer<dato_cache>CRL(size)

Obtain_CSAS()

main(){

envia(message,address)

}/*end  main/*

message

CSAS_Records

CSAS_Records

CSAS_Records

CSAS_Records

Fig. 28 Cache request generation form. The CRL buffer using Obtain_CSAS() f and envia() functions.
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Other functions

There are many other functions that we need for the protocol implementation. Those
functions are globally defined to be available from every part of the protocol. Where they
will be needed. These modules provide a useful mechanism for managing the data among
the different entities. A sample of those functions is briefly described in Figure 29.

main(){

}/*end  main/*

Process()

CSAS_Records

CSAS_Records

CSAS_Records

CSAS_Records

message received

list_CSA

Check_data()

compare

If different  store in CRL

CSAS_Record

Bufer<dato_cache>CRL(size)

CSA_Record

Public functions for the   CSA  Request  List       (CRL)  management

bool CRL_empty()   Check if the CSA list is empty or  not

Obtain_CSAS()      This  function  extract  the CSAS_Records  from  the CRL
        to form the corresponding  CA  message

Obtain_CSAS()

main(){

envia(message,address)

}/*end  main/*

message

CSAS_Records

CSAS_Records

CSAS_Records

CSAS_Records

Fig. 29 Complementary functions for data management

The first function in Figure 29, shows the Check_data(). This function makes a quick
comparation between a CSAS_Record and the data contained in the Cache, that is available
in the list_CSA array in Figure 27, and it returns true if both are equal.

Another function shown in Figure 29, is Process(). This function compare the
CSAS_Records received in a message corresponding data in the cache entry, but avoid
interacting directly with the cache. We have a CSA_Records array filled by the Cache_data
(is stored in list_CSA) just in case the information received is newer than the data contained
in the list_CSA (we use the Check_data() function to check it) we have to update the Cache
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data and for this purpose we need the CSA_record related to this CSAS_Record, so we have
to insert this CSAS_Record in the CRL pendent to be requested in the next message.

The last function in Figure 29, is to extract the CSAS_Record from CRL and send packets
requesting the newer data related to this CSAS_Record.
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Chapter 6

Implementation interface of the monitoring

In this chapter, we describe the interface implementation. It is an interface for all the FSM
of the protocol. The program is structured in three steps.
The first one, detail the facilities borrowed from the OS for the interface implementation.
In the second part, we  explaine the data structures for the transactions between the SCSP
program and the interface.
Finally, in the last part we illustrate the procedure used for the data management, which is
borrowed from the SCSP basic data structures.

6.1    OS facilities

Following the directive of the whole work, we have tried to create a useful and adaptable
interface. We have chosen the X-windows platform for its development. It provides a
standard environment for the application software.
Applications which use X to operate a workstation display can easily be run on a variety of
workstations from a variety of computer vendors, since all workstation vendors have by now
accepted the X-Window System as a standard for their workstation hardware[27].

X-Window offers a rich and complex environment that we can use for tailoring our
application according our needs without worry about the environment portability. The base
window system interface is designed to work either within a single central processing unit
(CPU) or between various CPUs. This system does not provide any special backdoor
interfaces for privileged software. A C-language subroutine package known Xlib  is provided
with the X Window System for the purpose of letting applications interface to the network
protocol and thence to the base window system.

The SCSP main program is written in C++, consequently the interface implementation
follows the same characteristic and the X’s base window system permit direct access to the
Xlib  functions with simple calls from C language programs. This feature allows quick
transactions from our SCSP structures to the data formats that the interface will need to
display showing the synchronization state in the SG. This feature let us not generate new
structures to work with the same data in the interface program.
Then we only have to reuse the same definitions and classes predefined to work in the SCSP
implementation. Therefore we can display immediately the protocol state and the different
machine situation that is running in the protocol without any supplementary translations. A
practical example of this translation is the architecture change from one system based on
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Linux OS to Sun Solaris which was achieved with the addition of the extended X-window
library XLIBEXT to the makefile that is used for the compilation process.

Any important feature of the interface is that the information it requires is read from a text
file. That file is written by the SCPS main program when it is in an idle state, it means that
in this moment when the process is not busy the file text is filled with the information of the
protocol state. Afterwards, the interface can access directly to that file and display the
information about the different machines that are running the protocol. This way of
operation permits an efficient implementation of the interface program without slowing
down the normal functions of the principal program.

6.2    Data structures

We have mentioned in the previous section that the structures needed are borrowed from the
SCSP development. It means that we can reuse the information management facilities
created before.

Configura  confi;
data_ini   *data;
Rsults_data   *results;

Thus, the Interface program reads an intermediate file that stores the state machine
information and the values of the different variables which are updated by the protocol
during its normal operation. This methodology avoids direct interaction between the
interface and the protocol to obtain the recent information. Hence, the interface program has
to read the last information from this file, refresh its data values and display the right
information on the screen. The interface will make use of the same initial functions that are
used by the SCSP for its configuration. These functions are available in the general dates
file. Then, we only have to insert their definition at the beginning of the Interface
implementation. The already known configuration function will provide the program all the
necessary data for the Interface initialization.

tam = confi.Config_readelem();
data = confi.Config_readdata();

We make use of the graphical interface provided by X windows to show in a illustrative
fashion the SG behavior during the synchronization process. A mesh of nodes is displayed
on the screen where each of those nodes represent a different server of the group. If more
information is required about a specific server we only have to place the mouse cursor over
that server and click the mouse button. Immediately, the more detailed data about that node
will appear in a window in a corner of the screen. At the same time the rest of the data will
be updated. After that, if the mouse cursor drops this server area out, the window will
disappear to allow displaying the information about other server if it is solicited.

6.3    Data transaction SCSP-Interface

The server data is updated with a local function defined in the program. That function reads
the information from the file results.txt, which is filled by the protocol with the MIB
objects information. Hence, the interface acts merely like a passive system with the unique
purpose of reading the information that the SCSP has put in this file. Consequently, the
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interface program could be considered like an agent in the SNMP. It has the limitation that it
cannot modify any data nor send any messages to the protocol like a real proxy agent.

The function which takes care of picking up the data from the file and filling the data
structure is:

Obtain_results(unsigned int &Last_clock, Results_data
*Results, int &len);

The first argument of this function is a reference time information needed to discard the
information read during previous invocations. The second argument is the data structure
which will be filled with the MIB objects information. It will be displayed in a window
when the information required by the user.

As a result, the Interface program is suitable for displaying the Synchronization state in the
group in a graphical format without interacting with the SCSP functions. It is more
comfortable for the user who can check the server behavior every moment and display the
most recent in MIB objects information from each server which have been updated by the
SCSP protocol.

In conclusion, by using the facilities provided by the X windows, we obtain a simple and
compact program that can be used in different vendors machines.



63

Chapter 7

Results

In this chapter we will briefly discuss the results of implementing the SCSP. We discuss a
few issues that were encountered during the final tests in the equipment of the Laboratory.

7.1    SCSP implementation features

Figure 30 depicts the global distribution of all the states in the normal operation of the
SCSP. It also illustrates the different steps and the data structures used to obtain a well
tailored implementation of the protocol.

Protocol flow:

main(){

}/*end main/*

Autoconfuguration
process

config.txt hosts

HFSM,CAFSM,CSU
classes initialization

Timers initialization

Objects tables
Initialization

scspDCS Table{}
scspLS  Table{}

  (Tables filled  with the
  autoconfiguration data)

Bufers and Cache
definition

 Cache {} class

list_CSACRL Buffer

Cache initialization
and list_CSA  filled

/* protocol   loop */

write DCS,LS  data

results.txtPacket processed in the
Correspnding FSM

/* end  loop */

Check if any Time
expires, resend Hello,CSUS,...

Check buffer for incoming messages

empty?

Y

Check PID/SGID
Select machine
type of Packet

N

Sleep(value of next
Timer expiration)

Fig. 30 SCSP general flow diagram
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7.2    SCSP test

After the program implementation we have to search all the possible bugs that are hidden in
the programming. It is a difficult task and for that reason we need some tools to follow the
different steps during the whole performance of the program. In the project development we
have used the software functions provided by “Free Software Foundation GNU”.

The GNU package also provides a useful debugger that we have used to run our program
under its control and in case there was any breakpoint we can stop the program and analyze
where was the problem.

In Figure 31, we can see all the modules of the implementation and despite that the protocol
was defined in a modular way, we have to check each of those parts independently to assure
their right behavior.

User
Interface

SCSP

TCP/IP

OBJECTS
TABLES

DATA  BASESDATA  BASES

 AutoConfig. System

envia();
myhostname();
type_of_pack();

Bufer<dato_bufer>
manejoin();

Configura class
config.txt
hosts.

xscsp.cpp

results.txt

HFSM class
CAFSM class
CSUclass

Tablesclass

Time  module:

Timer class
manejatime()
signal,alarm

list_CSA

 Cacheclass

Bufer<dato_cache>CRL(size)

CRL_emty()
Obtain_CSAS()

Check_data()

Process()

Obtain_CSA()

Update_Cache()

Fig. 31, Modules in the SCSP implementation

Another difficulty in the test was that the program have to be checked in different machines.
It means that we have to run the program under independent debuggers on each machine
where the SCSP is running. Fortunately, the GNU debugger provides a useful feature,
namely the remote server debugger. Hence, we can run in our local machine a process with
the debugger and its associated SCSP and at the same time run in a remote machine another
process with the debugger and SCSP program, which is continuously reporting to our local
machine the errors and breakpoints that happen in the remote platform.

Thus, this is the environment used for the program testing. The test was performed in
different workstations in the Laboratory of Telecommunications and the final result is an
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efficient program to update the information over the distributed entities in the Laboratory.
The hardware environment was the Sun Solaris workstations distributed in the Laboratory.
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Chapter 8

Conclusions and Future work

8.1    Conclusions

This chapter summarizes the software application that we have developed for data
synchronization based on the SCSP specifications. The principal objective of this project
was to provide a complementary program to be used by other systems for their data
replication. For this reason, this software has been developed in a modular way to permit its
integration with other mechanisms to achieve an efficient behaviour.

The main difficulty in this software development was handling all the amount of different
data and interfaces which were involved in the program. The problem was solved in modular
structures and independent functions that were tested gradually in stand alone functioning.
Thus, the final purpose was reached, and the complexity could be managed. Finally, we
obtained a standalone program that can be embedded in many applications to update their
data following a standardized algorithm that can be globally adopted.

The aim of this work is to create a simple but efficient tool for data replication. The reason
of the potential inefficiency is that in each server data may be moved and copied many times
for the same analysis in different layers of the software system. The data may also need to
be embedded inside complicated structures or primitives following strict specifications like
in X.500 or others. This is a wasteful of processor time and resources. Thus, we have
implemented the SCSP as an independent module that receives the data as a generic
warehouse and takes care of its replication among the entities in the group.

8.2    Future work

Finally, we have a powerful program for database synchronization. This tool can be used as
a stand alone protocol to work over various architectures with the same algorithm basis. We
only need to make a few changes in some modules which actually are totally dependent from
the OS where the protocol will be used. Those are the communications module (with its
signals and event announcements) and the Timers module (which we have avoided to bound
to the time signals in the OS with an additional internal function to update the time values
continuously).

Actually, there are some Internet drafts and other work about this subject which make use of
the SCSP facilities to provide synchronization and replication to their own database. It
means that those protocols will use the SCSP like a complementary part of their whole
implementation. An example of those protocols could be the Next Hop Routing Protocol
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[28] in the case of database sync. We can see the MARS servers in a LIS where the LIS
define the boundary of the SCSP SG [29] also in the ATMARP [30] protocol we can see
how to fit the SCSP facilities and we could continue with many other examples.

From another point of view, this package could be a useful step in a modular
implementation of the new incoming protocols. In that concept lies the idea of a modular
protocol. In this way, each concrete function is achieved in several different blocks that take
care of a specific task that must shape into an efficient and neat procedure forwarding the
results to the next level that solicits its services. Hopefully, it would be the foremost solution
in the next protocol generation development where the actual bottleneck is the packet
processing on each node, server or host where the different protocols have to stripe the same
packet many times for the routing analysis.

The philosophy we have chosen for the SCSP protocol development can be called a
building_block design. Instead of relying on bulky protocol definitions tools or ad-hoc text
encoding, the SCSP draws on existing well understood Internet technologies like UDP.

Hopefully this will lead to an easier later implementation and consensus building framework
for other concrete protocols. It should also stand as an example of a simple way to leverage
existing Internet technologies to easily implement new application-level services. The same
philosophy can be adopted in other kind of architectures where we can readapt the SCSP
program.

Hopefully SCSP implementation becomes widely used for providing the synchronization
and replication of data for other protocols.

8.3  Applications of the SCSP

As we described in the second chapter the directories are becoming a key component of the
service infrastructure in the emerging IP–based communications networks. The directories
hold both static and dynamic information about the users of the communication services
about the network and about the services themselves. Examples of controlled
communication services using directories are the traditional e-mail, IP telephony and
CuSeeMe. Due to IP Telephony, the service architectures of the traditional ISDN and
Intelligent Networks and the new IP based communication networks will have to
interoperate or converge.

We propose to use the Server Cache Syncronisation Protocol (SCSP) as a component of the
emerging infrastructure for synchronising and replicating directories for services
interoperable over IN and Internet communication networks. These directories could be
accessed using a variety of protocols including the LDAP and even the Intelligent Network
Application Protocol (INAP) in an IN. We hope that our implementation will contribute
towards such experiments and development.

The best known example of directory is defined by the X.500 standards. In this case the
directory information shadowing protocol (DISP) is used for data synchronisation and
replication. The inconvenience of this protocol is its complexity and difficult
interoperatibility among different architectures.

The alternative to the directory information access as we saw in the second chapter is the
LDAP defined by the IETF. But the LDAP server data synchronisation and replication
remain open issues. The Integrated Directory Services (IDS) Working Group has been
chartered to facilitate the integration and interoperability of directory services in the Internet
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and actually is working in the LDUP definition to provide the replication capabilty to the
new LDAP v3.

GLP

Another application for the SCPS, is to achieve the roaming service over IP for every
general IP service and in particular for IP voice[31]. There are many Regional Internet
Servic Providers (ISP s) operating within a particular state or province looking to combine
their efforts with those of other regional providers to offer services over a wider area. The
national ISP s wishing to combine their operations with those of one or more ISP s in
another nation to provide greater coverage in a group of countries or on a continent.

Businesses desire to offer their employees a comprehensive package of dialup services on a
global system basis. The SCSP protocol could provide an architectural framework for the
provisioning of roaming capabilities and it does directly support one of the most important
requirements that must be needed by the roaming system namely the information updating
about the elements of the architecture that compound any service.

To know how we can fit the SCSP  in the basic structure of a new service, we will describe
the elements required for the IP roaming.

Phone book. This a database or document containing data pertaining to dialup
access. It includes phone numbers and any associated attributes.

Phone book server. This is a server that maintains the latest version of the phone
book. The clients communicate with the phone book servers in order to keep their phone
book updated.

The main functions involved in this architecture are:

Phone number exchange. Phone number exchange involves propagation of number
of changes between providers in a roaming association. Current roaming implementations do
not provide for complete automation of the phone number exchange process.

Phone book compilation. Once the ISP’s phone book has received its updates it
needs to compile a new phone book and propagate this phone book to all other phone book
servers operated by that ISP.

Phone book update. Once the phone book is compiled, it needs to be propagated to
the users. Standarisation of the phone book update process allows for providers to update
user phone books independently of their client software or operating system.

Hence, the principal Phonebook requirement is the Phone book update protocol. For that
purpose we can make use of the SCSP to create this portability service. The update protocol
must allow for updating of clients on a range of different platforms and operating systems.
The phone book provider only has to fit the data into the update records and provide a Key
to check the information in the destination. The SCSP is like a lower layer that each party
can use as a tool to synchronise the phone book. The algorithms and data management are
hiddenfrom other providers. Contrary to  the SCSP X.500 specifications are rather
complicated. Each ISP needs to insert the data in a series of complex structures following
strict directives and primitives. In case of SCSP, the update mechanism does not impose any
operating system-specific requirements. The SCSP algorithm easily lends itself to portable
implementation leaving a lot of room for vendor differentation in the cache implementation
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itself. Future work could be focused in translating the SCSP package into the Roaming
Service Protocol.
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