
HELSINKI UNIVERSITY OF TECHNOLOGY

TEKNILLINEN KORKEAKOULU
Laboratory of Telecommunications Technology

An Implementation of the Internet

Call Waiting Service using SIP

Inmaculada Espigares del Pozo

Supervisor: Professor Francisco J. Mora
Instructor: Professor Raimo Kantola

Espoo, December 1999

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo i

Helsinki University of Technology Abstract of the Master’s Thesis
Author: Inmaculada Espigares del Pozo

Title of the Thesis: An Implementation of the Internet Call Waiting
Service using SIP.

Date: December 1999 Number of pages: 85

Faculty: Laboratory of Telecommunications Technology

Helsinki University of Technology (HUT)

Supervisor: Professor Francisco J. Mora

Instructor: Professor Raimo Kantola

 M. Sc. Jose M. Costa Requena

Nowadays telephony services can be approached using the traditional switched
network or using Internet. Both approaches employ different ways to establish
connections, transmit the voice and terminate calls. Multiple new services are being
required and implemented.

For real time communications two different protocols are used to establish and release
the connection between the two end systems: H.323 and SIP. Both protocols provide a
similar set of services but SIP is much simpler because it has less logical components.
This project focuses on SIP, the Session Initiation Protocol, but also compares it
against the H.323 signaling and control protocol.

We have studied the SIP for the purpose of evaluating it and to make an
implementation of a new service, the Internet Call Waiting (ICW). It is a useful
solution for the calls that otherwise would be lost when the line is busy and also for
rejecting undesirable incoming calls. On the other hand, it is a way of not wasting
network resources and contributing to call completion. Thus, pop-up dialogue boxes
are presented to make it simpler and easier to the user whose satisfaction is always an
important objective for an IP based service.

For service implementation, as the main tool, we have used the XML language. XML
is considered one of the best languages for describing complex data relationships. We
have also chosen XML because it is easily extended, flexible and because it has a text-
based syntax.

The complete project consists of a JAVA program that implements an UAS/UAC
running in a PC and also an extension (embedding the XML parser) of the SIP server
written in C borrowed from Columbia University to handle the scripts written in XML
defining the service required by the users.

In conclusion, we have tried to use the most efficient tools and mechanisms to
complete this work as we consider that time and money are resources to take into
account when developing the services of the new era.

Keywords: XML, script, JAVA, C, parser, service

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo ii

Preface
This master thesis has been written at the Laboratory of Telecommunications
Technology in Helsinki, Finland. First of all, I would like to express my gratitude to
the Helsinki University of Technology and the Polytechnic University of Valencia
for giving me the opportunity to complete my studies and meet fantastic new people
from different countries.

I would like to thank all my friends and colleagues from the department (specially
Kimmo Pitkäniemi, Arja, Mirja and Anita), and from other institutions who have
helped me to survive in Finland. I also sincerely appreciate Henning Schulzrinne’s
support given in the first "SIP Bake off" hosted by Columbia University in April
1999, New York (USA). Thanks to him we received the license to work with the SIP
server from Columbia University.

Truly thankful to my instructor, Raimo Kantola for his interest and guidance
constantly, and for giving me the opportunity of testing the program in the third "SIP
Bake off" hosted by Ericsson in December 1999, Richardson, Texas (USA). I cannot
forget to mention my supervisor in Spain, Francisco J. Mora, for giving me the
chance to develop my master thesis in Helsinki.

On the other hand, I would like to thank all my family, specially my parents, for
staying always by my side. Finally, I would love to thank my second instructor, Jose
Costa Requena, for his incessant and unconditional support given with such
happiness and optimism all the time. Without him, nothing would have been the
same.

December, 1999
Helsinki, Finland

Inmaculada Espigares del Pozo

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo iii

Table of Contents

PREFACE ..II

TABLE OF CONTENTS ...III

ABBREVIATIONS AND ACRONYMS ... V

LIST OF FIGURES ... VII

LIST OF TABLES .. VIII

INTRODUCTION ..1

1.1 Purpose of the Master Thesis .. 2

1.2 Organization of this Thesis.. 3

MULTIMEDIA CONFERENCING STANDARDS ..4

2.1 ITU Conferencing Standards .. 4

2.2 IETF Conferencing standards... 5
2.2.1 MMUSIC STANDARDS.. 6

2.3 Conclusion .. 6

THE SESSION INITIATION PROTOCOL ..7

3.1 Main Characteristics of SIP .. 7

3.2 SIP components .. 8

3.3 SIP message .. 9
3.3.1 REQUEST MESSAGE ... 10
3.3.2 RESPONSE MESSAGE ... 12
3.3.3 HEADER FIELDS.. 13
3.3.4 SIP MESSAGE BODY... 14

3.4 Basic protocol functionality and operation.. 15
3.4.1 SIP INVITATION .. 15
3.4.2 PROXY SERVER versus REDIRECT SERVER ... 18
3.4.3 LOCATING A USER ... 18
3.4.4 SIP ADDRESSES ... 19
3.4.5 SIP MOBILITY EXAMPLE...19

3.5 SIP vs H.323.. 22
3.5.1 COMPLEXITY... 22
3.5.2 MODULARITY.. 22
3.5.3 TRANSPORT PROTOCOL NEUTRALITY ... 23
3.5.4 EXTENSIBILITY... 23
3.5.5 SERVICES.. 24

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo iv

3.5.6 CONCLUSIONS... 24

THE SESSION DESCRIPTION PROTOCOL ..25

4.1 The Session Description Protocol Overview .. 25
4.1.1 MEDIA INFORMATION... 26
4.1.2 AN SDP DESCRIPTION STRUCTURE.. 27

4.2 A SDP Session Example... 28
4.2.1 PROTOCOL VERSION ... 28
4.2.2 ORIGIN... 28
4.2.3 SESSION NAME.. 29
4.2.4 CONNECTION DATA... 29
4.2.5 TIME SESSION IS ACTIVE.. 30
4.2.6 MEDIA ANNOUNCEMENTS... 30

COLUMBIA UNIVERSITY SIP SERVER 1...33

5.1 Columbia University implementation... 34
5.1.1 SYNOPSIS.. 34
5.1.2 CONFIGURATION.. 35

5.2 Sipd functions ... 39

5.3 Sipd additional libraries .. 40

SCRIPTING NEW SERVICES: THE CALL PROCESSING LANGUAGE42

6.1 The Call Processing Language.. 42
6.1.1 THE CPL NETWORK MODEL... 43
6.1.2 SCRIPTS: WHAT, WHICH, WHERE AND HOW ... 43

6.2 XML: the bridge between SGML and HTML .. 44
6.2.1 NOTES OF XML STORY.. 44
6.2.2 WHY XML? ... 45

THE INTERNET CALL WAITING SERVICE ...47

7.1 Defining the service.. 47

7.2 The project structure ... 51
7.2.1 MAIN LEGACY ITEMS.. 52
7.2.2 THE XML PARSER AND THE CALL PROCESSING LANGUAGE 53
7.2.3 UAS/UAC ... 56

CONCLUSIONS AND FUTURE WORK ..62

REFERENCES...64

ANNEX A ...69

THIRD SIP BAKE OFF ..73

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo v

Abbreviations and Acronyms
ACK ACKnowledge

API Application Program Interface

ASCII American Standard Code for Information Interchange

AVP Audio Video Profile

CGI Common Gateway Interface

CLC C Libraries Collection

CPL Call Processing Language

CR Carriage Return

CRLF Carriage Return and Linefeed

CU Columbia University

DN Destination Number

DTD Document Type Definition

GDBM GNU DataBase Management

GML Generalized Markup Language

GNU GNU’s Not Unix

GSTN Global Switched Telephone Network

H.323 Internet Video Conferencing standards from ITU

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HUT Helsinki University of Technology

IETF Internet Engineering Task Force

ICW Internet Call Waiting

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IN Intelligent Networks

IP Internet Protocols

ISDN Integrated Services Digital Network

ISO International Standards Organization

ITU International Telecommunications Union

JMF Java Media Framework

MC Multipoint Controller

MCU Multipoint Control Unit

MMUSIC Multiparty Multimedia SessIon Control

Mbone Internet Multicast Backbone

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo vi

NTP Network Time Protocol

OSI Open Source Initiative

PC Personal Computer

PERL Practical Extraction and Report Language

PSTN Public Switched Telephone Network

QoS Quality of Service

RFC Request For Comments

RSVP Resource ReserVation Protocol

RTCP Real Time Control Protocol

RTP Real Time Protocol

RTSP Real Time Stream Protocol

SAP Session Announcement Protocol

SCCP Simple Conference Control Protocol

SCF Service Control Function

SCP Service Control Point

SDES Source DESscription packets

SDP Session Description Protocol

SGML Standard Generalized Markup Language

SIP Session Initiation Protocol

SN Service Nodes

SS7 Signaling System 7

SP Space Character

T.120 Internet Multimedia Conferencing standards from ITU

TCL Tool Command Language

TCP Transmission Control Protocol

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

UML Unified Modeling Language

URI Universal Resources Identifier

URL Uniform Resource Locator

WWW World Wide Web

W3C World Wide Web Consortium

XML eXtensible Markup Language

 XSL eXtensible Style Language

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo vii

List of figures
Figure 1. H323 umbrella

Figure 2. SIP message

Figure 3. Response Codes

Figure 4. Call Setup (both endpoints registered, proxy routed call setup)

Figure 5. Communication through a proxy server

Figure 6. SIP operation in redirect mode

Figure 7. Communication through a redirect server

Figure 8. SIP Mobility example

Figure 9. Protocols architecture

Figure 10. SDP Session Example

Figure 11. Columbia University SIP server

Figure 12. Configuration file example.

Figure 13. XML example

Figure 14. IPtele logotype

Figure 15. IPtele window

Figure 16. Selecting services window

Figure 17. Registering window

Figure 18. Setting up call

Figure 19. Callee information window

Figure 20. New incoming call window

Figure 21. Control panel

Figure 22. Project organization chart

Figure 23. Software panel: CU-SIP server and HUT extension

Figure 24. A tree built by the XML parser

Figure 25. Main program diagram

Figure 26. UAS module

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo viii

List of tables
Table 1. Proxy server: stateful, stateless.

Table 2. Header Fields.

Table 3. Proxy server vs Redirect server

Table 4. SDP descriptions permitted type fields.

Table 5. Media type.

Table 6. RequestLog file format.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 1

Chapter 1

Introduction

Telephony service today is provided for the most part over circuit-switched networks,
which are referred to as Public Switched Telephone Networks (PSTN). A new trend
that is emerging in recent years is to provide telephony service over IP networks,
known as IP Telephony or Voice over IP [52].

An important driving force behind IP Telephony is cost savings, especially for
corporations with large data networks. The high cost of long-distance and
international voice calls is the crux of the issue. A significant portion of this cost
originates from regulatory taxes imposed on long-distance voice calls. Such
surcharges are not applicable to long distance circuits carrying data traffic; thus, for a
given bandwidth, making a data call is much less expensive than making a voice call.

There are other very significant motivating factors for carrying voice traffic over data
networks as well. A very important benefit of IP Telephony is the integration of voice
and data applications, which can result in more effective business processes (e.g.
teleconferencing, integrated voice mail and e-mail). Another benefit is the enabling
of many new services both for businesses and for customers. The flexibility offered
by IP Telephony by moving the intelligence from the network to the end stations, as
well as the open nature of IP networks, are factors that enable new services.

In order for IP Telephony to gain mainstream acceptance and ultimately replace the
traditional telephony service, two conditions have to be met. First, the quality of the
voice communication must be at least at the same level. Secondly, the ease of
operation and functionality offered to the end-user must be at least also the same.
This condition requires the IP Telephony architecture to provide a signaling
infrastructure that offers at least the same capabilities and features as the Signaling
System 7 (SS7) architecture in PSTN.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 2

More specifically, the signaling infrastructure must:

� provide the functionality required to set up, manage, and tear down calls and
connections;

� be scalable to support a very large number of registered endpoints, and a very
large number of simultaneous calls;

� support network management features for policy control, billing, etc.;

� provide a mechanism to communicate and set up the Quality of Service
requested by the end points;

� be extensible to help with adding new features easily;

� support interoperability among different vendors’ implementations, among
different versions of the signaling protocol, and with different signaling
protocols.

Nowadays two standards compete for IP Telephony signaling. The older standard is
the ITU-T recommendation H.323, which defines a multimedia communications
system over packet-switched networks, including IP networks [18]. The other
standard, the Session Initiation Protocol (SIP) comes from the IETF MMUSIC
working group [30]. For this project we have used SIP for different reasons described
at the end of chapter 3 where we compare SIP and H.323 in terms of complexity,
modularity, transport protocol neutrality, extensibility and services [19][20].

1.1 Purpose of the Master Thesis

As the title of the project says, our goal was to implement the Internet Call Waiting
service. The Session Initiation Protocol (SIP) was used for signaling features and the
Call Processing Language (CPL) for describing the service [1][34]. For that purpose
we had to gain experience in the SIP signaling technology to take advantage of its
characteristics to improve the service implementation. We could have chosen many
other different services to be developed and to show how easy it is to create new
services depending on user requirements using IP Telephony [7].

The main objective is to demonstrate how new services can be defined from end
points attending to the end-user wishes. The mechanism briefly is as follows. A user
decides that he/she wants a certain service, so he/she sends to the SIP server a
REGISTER message, where his/her information and the definition of the service
required are included. To write the service definition we have used XML for many
reasons presented in chapter 6. When the server receives the REGISTER message, it
reads the user preferences from the script included in the message [3]. Next the
server stores the user’s service information that will be consulted when a new call for
the user arrives to the server. Users can define as many services as they desire,
storing them in the server and enjoying them.

In this way, services in IP Telephony can be defined like a new concept of services
residing in their own level independent of the signaling protocol.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 3

1.2 Organization of this Thesis

The rest of this thesis is organized as follows. Chapter 2 gives an overview of the
ITU and IETF multimedia conferencing standards [18][27]. Chapter 3 describes the
Session Initiation Protocol (SIP) analyzing the structure of the messages (requests
and responses) and giving examples to clarify the protocol behavior [1]. At the end of
chapter 3 we study the most significant differences between the H.323 protocol and
the Session Initiation Protocol [22].

In chapter 4 we introduce the Session Description Protocol (SDP) as an elemental
tool for the development of this project [23]. The SDP is used to advertise
multimedia conferences and communicate the conference addresses and conference
tool-specific information necessary for participation.

Chapter 5 describes the Columbia SIP server behavior. This is the server we have
used for testing and where we have included the necessary extensions to create new
services. In chapter 6 we present the concept of the Call Processing Language used to
define services and we also include an XML overview [34][37].

Chapter 7 could be considered the most interesting one. In this chapter we include all
the details about our implementation, the Internet Call Waiting service. To complete
this project we present our conclusions and summarize the work in chapter 8.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 4

Chapter 2

Multimedia Conferencing
Standards

This chapter provides some background on the current conferencing standards. The
first section explains the relevant ITU conferencing standards focusing on the H.323
and T.120 series [18]. The second section examines the IETF conferencing standards
[28].

It is difficult to show exactly how the ITU and IETF standards compare directly to
each other. This is largely because the ITU standards are monolithic, while the IETF
standards are divided by the function they serve. Many of the conferencing standards
of the IETF and the ITU are complementary but a few are overlapping.

2.1 ITU Conferencing Standards

The key standards from the International Telecommunication Union (ITU-T) for
Internet conferencing are the T.120 and H.323 series of standards [18].

The focus of the T.120 standard is on data protocols for multimedia conferencing.
T.120 itself specifies the relation of the standards in the T.120 series, which come
from Study Group 8 of the ITU. These standards also provide support for multipoint
communications using a centralized mechanism called a Multipoint Conferencing
Service (MCS).

The focus of the H.323 standard is on video conferencing on local area networks
(LANs) without quality of service (QoS) guarantee, which includes most LANs on
the Internet. H.323 specifies the relation of standards in the H.323 series, which
comes from Study Group 15 of the ITU (Figure 1).

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 5

Figure 1. H323 umbrella

H.323 is basically an Internet "patch" of the H.320 series of standards, which specify
videoconferencing over the PSTN. The T.120 and H.323 standards are
complementary although it appears that there is an overlap between some of the call
control functions [21].

2.2 IETF Conferencing standards

The focus of the IETF multimedia conferencing has been primarily on standards to
enable the use of multicast for multimedia conferencing [28]. The working group in
charge of the higher level standards specifically for multicast conferencing is called
the Multiparty Multimedia Session Control (MMUSIC) group [30]. To have a full
understanding of standards from MMUSIC, it is necessary to understand the
underlying standards that they rely on from other IETF groups. The list of standards
includes:

� Internet Group Management Protocol (IGMP) provides management
functions for multicast routers such as a router joining a multicast tree.

� Resource Reservation protocol (RSVP) provides the setup protocol to reserve
resources in a router and it can be used to request a guaranteed QoS in an IP
network.

� Real Time Protocol (RTP) and Real Time Control Protocol (RTCP). RTP
has a short header, which is added to UDP packets for carrying real time
information such as audio or video. It includes time-stamp information for
synchronizing audio and video and a sequence number for detecting lost packets
and identifiers. RTCP provides control information such as feedback on the
quality of data transmission. RTCP can also send Source Description (SDES)
packets with information on members in a multicast group, which can be used to
maintain a real-time list of membership in a conference [24].

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 6

2.2.1 MMUSIC STANDARDS

The Multiparty MUltimedia SessIon Control (MMUSIC) develops Internet standards
track protocols to support Internet teleconferencing sessions [30]. MMUSIC's focus
is on supporting the loosely controlled conferences that are pervasive on the MBone
today.

To date, MMUSIC has drafted several protocols [29].

� Session Description Protocol (SDP-RFC 2327) and Session Announcement
Protocol (SAP). To distribute session descriptions (announcement of e.g.
session's names, types of media, available protocols, session times, etc.) for the
purposes of multimedia session initiation [23][26].

� SAP Security. To provide security for session announcements.

� Real-time Stream Protocol (RTSP-RFC 2326). To control on demand delivery
of real-time data [25].

� Session Initiation Protocol (SIP). To initiate sessions and for inviting users to
sessions [1].

� Simple Conference Control Protocol (SCCP). To manage tightly controlled
sessions [28].

The Session Initiation Protocol will be described and analyzed in detail in Chapter 3,
as it is an important element of the study skeleton.

2.3 Conclusion

Providing an integrated Internet telephony service is no small task. It requires
signaling protocols, transport protocols, directory protocols, service specification
languages, gateway discovery protocols, and a host of other mechanisms. In this
chapter, we have provided a general overview of some of the protocols required.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 7

Chapter 3

The Session Initiation Protocol

"The Session Initiation Protocol (SIP) is an application-layer control (signaling)
protocol for creating, modifying and terminating multimedia sessions or calls with
one or more participants."

In this chapter we focus on the study of the Session Initiation Protocol [1]. Firstly, we
give a general idea of the protocol presenting important issues such as its
characteristics, its functionality, the structure of the message, and the behavior of the
servers. Secondly, the Session Description Protocol (SDP) [23] is introduced and we
conclude comparing the SIP and the H.323 protocols [21].

3.1 Main Characteristics of SIP

The Session Initiation Protocol has distinct characteristics including the following.

� It is designed to be independent of the lower-layer transport protocol. This is
because it has its own reliability system and can work with UDP as well as
with TCP transport protocols.

� It invites both persons and "robots" such as a media storage service.

� It invites parties to both unicast and multicast sessions.

� It can be used to initiate sessions as well as invite members to existing
sessions.

� It supports transparently name mapping and redirection services, allowing the
implementation of ISDN and Intelligent Network telephone subscriber
services that enable personal mobility.

� Personal mobility is defined as the ability of end users to originate and

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 8

receive calls and access subscribed telecommunication services on any
terminal in any location, and the ability of the network to identify end users
as they move [6].

� It supports five facets of establishing and terminating multimedia
communications:

User location: determination of the end system to be used for
communication.

User capabilities: determination of the media and media parameters to
be used.

User availability: determination of the willingness of the called party to
engage in communications.

Call setup: establishments of call parameters at both called and calling
party.

Call handling: including transfer and termination of calls.

� It can initiate multiparty calls using a Multipoint Control Unit (MCU) or
fully meshed interconnection instead of multicast.

� As we presented in Chapter 2, it is designed as part of the overall IETF
multimedia data and control architecture [27].

� It can be used in conjunction with other call setup and signaling protocols
[22].

� It does not offer conference control services and does not prescribe how a
conference is to be managed, but SIP can be used to introduce conference
control protocols.

� It can invite users to sessions with and without resource reservation.

� It is text-based. This allows easy implementation, easy debugging and makes
SIP extensible and flexible.

3.2 SIP components

There are two components in a SIP system: a User Agent (UA) and a network server.
A UA is an end system that acts on behalf of a user. Usually it consists of two parts, a
client (UAC) and a server (UAS), as the user probably is wishing to both be able to
call and to be called. The UAC is used to initiate a SIP request while the UAS
receives requests and returns responses on behalf of the user.

There are two kinds of network servers, namely, the proxy and the redirect servers.

� A SIP proxy server forwards requests to the next server after deciding which one
it should be. This next server could be any kind of SIP server and the proxy does
not need to know the type of the next server. Before the request has reached the
UAS it may have traversed several servers. Those will be traversed in reverse
order by the response.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 9

The SIP proxy server can be stateful or stateless. Table 1 shows the differences
between the two models. When stateful, a proxy remembers the incoming request,
which generated outgoing requests. For that purpose the stateful server creates new
processes to attend each new incoming request. Instead, a stateless proxy sequentially
processes each new request and forgets all the information once an outgoing request
is generated. It has the benefits of less processing and memory requirements in the
server.[2]

STATEFUL PROXY SERVER STATELESS PROXY SERVER
Maintains call context No call context
Replicates UAS/UAC to process requests/responses Response is not based on UA replication
Call state and transaction state can be maintained Provides client anonymity
Forking proxies require state Restricted gateway access
TCP proxies must be stateful for reliability High processing capacity
Enhanced services require state for execution Allows for easier replication that the stateful
Can populate billing information Can have semi-stateful proxy for ultimate benefits

Table 1. Proxy server: stateful, stateless.

� A redirect server does not forward requests to the next server. Instead of that, it
sends a redirect response back to the client containing the address of the next
server to contact with.

There is also a server that accepts REGISTER requests, which is called the registrar.
A registrar is typically co-located with a proxy or redirect server and may also offer
location services.

3.3 SIP message

A SIP message is either a REQUEST from a client to a server or a RESPONSE from
a server to a client. Figure 2 depicts the structure and headers of the SIP messages.

Figure 2. SIP message

SIP messagesREQUEST RESPONSE

Request = Request-Line
 * (general-header

| request-header
| entity-header)

 CRLF
[message-body]

Response = Status-Line

*(general-header
 | response-header

| entity-header)
 CRLF

[message-body]

CLIENT CLIENTSERVER SERVER

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 10

3.3.1 REQUEST MESSAGE

The request message begins with a Request-Line and after that the headers are added.
Those headers can be General-headers, Request-headers or Entity-headers. Finally,
after a blank line goes the message body if necessary [2].

The Request-Line format is:

Method space Request-URI space SIP-Version CRLF

The SIP-version is the protocol version used in the request message, e.g. SIP/2.0.

The Request-URI is a SIP URL or a general URI (the terms and generic syntax of
URI and URL are defined in RFC 2396 [49]). It indicates the user or service to which
the request is being addressed to.

Basically, the Uniform Resource Identifier (URI) is a compact string of characters for
identifying an abstract or physical resource. The URI provides a simple and
extensible means for identifying a resource. The specification of URI syntax and
semantics is derived from concepts introduced by the World Wide Web global
information initiative. URI is designed to meet the recommendations laid out in
"Functional Recommendations for Internet Resource Locators" (RFC1736) and
"Functional requirements for Uniform Resource Names" (RFC1737).

The URI syntax consists of a sequence of components separated by reserved
characters such as ";", ":", "@", "?", and "/".

The term "Uniform Resource Locator" (URL) refers to the subset of URI that identify
resources via a representation of their primary access mechanism (e.g., their network
"location"), rather than identifying the resource by name or by some other attribute(s)
of that resource. URL schemes that involve the direct use of an IP-based protocol to a
specified server on the Internet use a common syntax for the server component of the
URI's scheme-specific data:

<userinfo>@<host>:<port>, where <userinfo> may consist of a user name and,
optionally, scheme-specific information about how to gain authorization to access the
server. The parts "<userinfo>@" and ":<port>" may be omitted.

server = [[userinfo "@"] hostport]

The user information, if present, is followed by a commercial at-sign "@".

userinfo = *(unreserved | escaped | ";" | ":" | "&" | "=" | "+" | "$" | ",")

The host is a domain name of a network host, or its IPv4 address as a set of four
decimal digit groups separated by "."

hostport = host [":" port]
host = hostname | IPv4address
hostname = *(domainlabel ".") toplabel ["."]
domainlabel = alphanum | alphanum *(alphanum | "-") alphanum
toplabel = alpha | alpha *(alphanum | "-") alphanum
IPv4address = 1*digit "." 1*digit "." 1*digit "." 1*digit
port = *digit

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 11

Thus, basically the SIP URI follows strictly these recommendations for defining the
resources location.

There are six possible methods that can be used in a request message. Those methods
are INVITE, ACK, BYE, CANCEL, OPTION and REGISTER. The functions of these
methods are described below.

� INVITE. This method indicates that a user or a service is being invited to
participate in a session. The message body contains a description of the session
to which the callee is being invited. This method has to be supported by a SIP
proxy, redirect and user agent servers and user agent clients.

� ACK confirms that the client has received a final response to an INVITE request.
This method is only used following an INVITE method. It may contain a message
body with the final session description to be used by the callee. A SIP proxy,
redirect and user agent servers and user agent clients must support it.

� OPTIONS. With this method a server is queried as to its capabilities. This
method has to be supported by a SIP proxy, redirect and user agent servers and
user agent clients.

� BYE. The UAC uses this method to indicate to the server that it wishes to release
the call. It MUST be forwarded like an INVITE request and may be issued by
either the caller or the callee. This method must be supported by proxy servers
and should be supported by redirect and UA SIP servers.

� CANCEL. This method is used to cancel a pending request with the same Call-
ID, To, From and Cseq header fields value. It does not affect a completed
request, a request that has been processed or a response that has been sent back.
It must be supported by proxy servers and should be supported by all other SIP
server types.

� REGISTER. This method is used by a client to register the address listed in the
To header field with a SIP server. The REGISTER request-header fields play an
important role in our implementation and are defined as follows:

Via indicates the path taken by the REGISTER request so far.

To: This header contains the address-of-record whose registration is to be
created or updated.
From contains the address-of-record of the user responsible for the
registration. For first party registration, it is identical to the To header field
value.

Request-URI names the destination of the registration request, i.e. the
domain of the registrar. The user name must be empty.

Call-ID : All registration from the same user should use the same Call-ID
header value.

Cseq: Registration with the same Call-ID must have increasing Cseq header
values.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 12

Contact: The request may contain a Contact header field; future non-
REGISTER requests for the URI given in the To header field should be
directed to the address/es given in the Contact header.

The client must send a REGISTER method after certain time to refresh the
registration. If this does not happen, the server should drop the registration.

Let us look at an example using the REGISTER method for a third party
registration. A user at host tct.hut.fi registers on start-up, via multicast, with
the local SIP server named hut.fi.

From the client to the server:

REGISTER sip:hut.fi SIP/2.0
Via: SIP/2.0/UDP tct.hut.fi
From: sip:queca@hut.fi
To: sip:queca@hut.fi
Call-ID : 70710@tct.hut.fi
CSeq: 1 REGISTER
Contact: <sip:queca@tct.hut.fi:3890;transport=udp>
Expires: 7200

The Expires entity-header field gives the date and time after which the
message content expires. This header field is currently defined only for the
REGISTER and INVITE methods.

In a REGISTER request, the client indicates how long it wishes the
registration to be valid. In the response, the server indicates the earliest
expiration time of all registrations. The server may choose a shorter time
interval than that requested by the client, but should not choose a longer
one[10].

3.3.2 RESPONSE MESSAGE

The response message begins with a Status-Line then several headers are inserted [1].
Those headers can be General-headers, Response-headers or Entity-headers and
after a blank line goes the message body, if necessary.
The Response-Line format is:

SIP-version space Status-Code space Reason-Phrase CRLF
The Reason-Phrase is intended to give a short textual description of the Status-Code.
The Status-Code is a 3-digit integer that indicates the outcome of the attempt to
understand and satisfy the request. The first digit of the Status-Code defines the class
of the response. In SIP there are six types of responses due to the six possible values
of the Status-Code first digit, and they are listed below:

1xx: Informational � the request was received and it is going to be processed.

2xx: Success � the action was successfully received, understood and accepted.

3xx: Redirection � further actions need to be taken in order to complete the request.

4xx: Client Error � the request contains bad syntax or cannot be fulfilled at this
server.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 13

5xx: Server Error � the server failed to fulfil an apparently valid request.

6xx: Global Failure � the request cannot be fulfilled at any server.

The SIP response codes are based on these six response types and can be easily
extended because only a few of the possible codes are defined. It is necessary that the
applications understand the class of any response code. The response codes defined
are enlisted in Figure 3.

Figure 3. Response Codes

3.3.3 HEADER FIELDS

The ordering of the header fields is not important in general [5]. The only
requirement is that the header fields, which are hop-by-hop, must appear before any
header fields, which are end-to-end. Other fields can be added as required and a
server should ignore the headers that it does not understand. Proxy can add a Via
field but it cannot reorder the existing headers.
Table 2 shows the set of headers.

INFORMATIONAL
“100” Trying
“180” Ringing
“181” Call Is Being Forwarded
“182” Queued

SUCCESS
“200” OK

REDIRECTION
“300” Multiple Choices
“301” Moved Permanently
“302” Moved Temporarily
“303” See Other
“305” Use Proxy
“380” Alternative Service

CLIENT ERROR
“400”
“401”
“402”
“403”
“404”
“405”
“406”
“407”
“408”
“409”
“410”

Bad Request
Unauthorized
Payment Required
Forbidden
Not Found
Method Not Allowed
Not Acceptable
Proxy Authentication Required
Request Timeout
Conflict
Gone

“411”
“413”
“414”
“415”
“420”
“480”
“481”
“482”
“483”
“484”
“485”
“486”

Length Required
Request Message Body Too Large
Request-URI Too Large
Unsupported Media Type
Bad Extension
Temporarily Not Available
Transaction Does Not Exist
Loop Detected
Too Many Hops
Address Incomplete
Ambiguous
Busy Here

SERVER ERROR
“500”
“501”
“502”
“503”
“504”
“505”

Internal Server Error
Not Implemented
Bad Gateway
Service Unavailable
Gateway Timeout
SIP Version Not Supported

GLOBAL FAILURE
“600”
“603”
“604”
“606”

Busy Everywhere
Decline
Does Not Exist Anywhere
Not Acceptable

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 14

GENERAL-HEADER ENTITY-HEADER REQUEST-HEADER RESPONSE-HEADER

Accept
Accept-Encoding
Accept-Language
Call-ID
Contact
Cseq
Date
Encryption
Expires
From
Record-Route
Timestamp
To
Via

Content-Encoding
Content-Length
Content-Type

Authorization
Contact
Hide
Max-Forwards
Organization
Priority
Proxy-Authorization
Proxy-Require
Route
Require
Response-Key
Subject
User-Agent

Allow
Proxy-Authenticate
Retry-After
Server
Unsupported
Warning
WWW-Authenticate

Table 2. Header Fields

� GENERAL HEADER FIELD: It is applied both to request and response
messages. They can be extended reliably only in combination with a change in
the protocol version, so the unrecognized header fields are treated as entity-
header fields.

� ENTITY HEADER FIELD: They define information about the message-body
or about the resource identified by the request.

� REQUEST HEADER FIELD: They allow the client to pass additional
information about the response, which cannot be placed in the Status-Line. They
can be extended reliably only in combination with a change in the protocol
version. Unrecognized fields are treated as entity-header fields.

� RESPONSE HEADER FIELD: They allow the server to pass additional
information about the response, which cannot be placed in the Status-Line. These
header fields give information about the server and about further access to the
resource identified by the Request-URI.

3.3.4 SIP MESSAGE BODY

All the requests MAY have a message body, except the BYE request. For the INVITE,
ACK and OPTIONS requests it is always a session description. In most cases it will
follow the Session Description Protocol (SDP) since SIP and SDP belong to the same
protocol family [23]. The SDP is described in chapter 4.

The SIP message body length should be given in the Content-Length header field.
And the Content-Type header field must give the type of the message. If the message
is encoded, it must be indicated in the Content-Encoding header field.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 15

3.4 Basic protocol functionality and operation

To understand the basic operation of the SIP protocol we have drawn some pictures
showing the main transactions and how the different servers take part in the
establishment of the desired communication between the caller and the callee.

3.4.1 SIP INVITATION

A successful SIP invitation consists of two requests [9]. The first one is always an
INVITE and it is followed by an ACK. The INVITE request asks the callee to join a
particular conference or to establish a two-party conversation. After the callee has
agreed to participate in the call, the caller confirms that it has received that response
by sending an ACK request. If the caller no longer wants to participate in the call, it
sends a BYE request instead of an ACK. Figure 4 presents the basic transactions to
setup a call.

Figure 4. Call Setup (both endpoints registered, proxy routed call setup)

The INVITE request typically contains a session description that provides the called
party with the information required to be able to join the session.

There are two different ways of establishing the communication depending on the
server (proxy or redirect server) that we find on the way from the caller to the callee.

CALLERCALLER PROXYPROXY CALLEECALLEE

time

REGISTER

INVITE

 200OK

sequence
diagram

INVITE

LOCATIONLOCATION
SERVERSERVER

OK

180 Ringing
180 Ringing

 200 OK

REGISTER
OK

ACK
ACK

SESSION ESTABLISHED

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 16

A. If the server is a PROXY SERVER, the establishment of the
communication between the two parties is shown in Figure 5:

1. The caller sends the SIP INVITE request to the proxy server. The
proxy server accepts it.

2. The proxy server contacts the location service with all or parts of the
address. The SIP server, according to the To field, consults its own
database to check if the user's registration already exists. Afterwards,
the server tries to find other possible locations of the user. For that
purpose, the SIP server sends a query to a remote LDAP server
including the SIP URL received in the request. The locations
returned by the LDAP server, are included in the Contact field of the
following messages [32].

3. The proxy server obtains a more precise location.

4. The proxy server issues a SIP INVITE request to the address/es
returned by the location service.

5. The user agent server alerts the user and returns a success indication
to the proxy server.

6. The proxy server returns the success result (OK) to the original
caller.

7. The caller using an ACK request confirms the receipt of this
message.

8. The ACK request is forwarded to the callee and can also be sent
directly to the callee by passing the proxy.

L ocati on
s er ver

P r oxy
s er verCal l er Cal l ee

4 . INVITE

5 . O K6 . O K

1 . INVITE

7 . AC K 8 . AC K

Figure 5. Communication through a proxy server

 (LDAP)

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 17

B. But if the server is a REDIRECT SERVER, the communication is
completed in a different way, shown in Figure 6 and Figure 7.

Figure 6. SIP operation in redirect mode

1. The caller sends the SIP INVITE request to the redirect server. The
redirect server accepts it.

2. The redirect server contacts the location service with all or parts of
the address as was explained in the proxy section.

3. The redirect server obtains a more precise location.

4. The redirect server returns the address to the caller.

5. The address is acknowledged from the caller via an ACK request.

6. The caller issues a new request, with the same call-ID but a higher
CSeq to the address returned by the first server.

7. The call succeeds (OK).

8. The caller and the callee complete the handshake with an ACK.

UACUAC REDIRECTREDIRECT UASUAS

time

INVITE:queca@hut.fi

302 moved temp

ACK

100 Trying

ACK

200 OK

sequence
diagram

INVITE:queca@nokia.com

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 18

L ocati on
s er ver

R edi r ect
s er ver

Cal l er

Cal l ee

1 . INVITE

4 . Ad d res s

5 . AC K

6 . INVITE

7 . O K

8 . AC K

Figure 7. Communication through a redirect server

3.4.2 PROXY SERVER versus REDIRECT SERVER

After analyzing the different ways of establishing the communication, in Table 3 we
include a comparison between both kinds of servers. The Redirect server requires a
minimal implementation to process the incoming requests and gives back the address
of the next server to contact with. Instead, the proxy server needs more computational
resources to process the requests and to send back a response according to the request
contents. The advantage of the proxy is the flexibility provided for service
implementations in the server management request according to user requirements
[2].

PROXY SERVER REDIRECT SERVER
Can be stateful or stateless. High capacity.
Flexible, network service implementations. Minimal state overhead.
Reliability achieved through replication. Service execution pushed to client.
Scalability achieved through partitioning.
Overload potential, if not properly scaled.

Table 3. Proxy server vs Redirect server

3.4.3 LOCATING A USER

When a proxy or a redirect server contacts a location server, it can respond with a list
of zero or more addresses where the user can be reached. This is because the user
may be logged at more than one host or because the location server has inaccurate
information. The action taken on receiving a list of locations varies with the type of
the SIP server.

A redirect server will tell the caller all the addresses where the callee can be located
and it is the caller, which decides what to do.

LDAP

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 19

A proxy server will try the addresses given by the location server sequentially or in
parallel until the call is successful or the callee has reclined the call.

To follow the way the message has taken, when a proxy server forwards a SIP
request it adds a VIA-header to the message with its address. It is done so the
response can follow the same way back. The order of the VIA-headers is important: a
new VIA-header must be added to the end of the VIA-headers list of the message.
This is also useful to prevent loops. A proxy server must not forward a request to a
server that is already in the VIA-header list.

3.4.4 SIP ADDRESSES

The objects addressed by SIP are users at hosts identified by a SIP URL [49]. The
SIP URL has the form:

� The user part is a user name, a civil name or a telephone number.

� The host part is either a domain name having e.g. a numeric network address.

A SIP address can designate an individual, the first available person from a group of
individuals or a whole group. SIP URLs are used within SIP messages to indicate the
originator, the current destination and the final recipient of a SIP request. Also they
are used to specify redirection addresses, although this is not always true because
some of the addresses mentioned above may be non-SIP URLs. SIP URLs can also be
embedded in web pages or other hyperlinks indicating the use of the INVITE method.

3.4.5 SIP MOBILITY EXAMPLE

In this section we make use of one of the most tempting SIP characteristics [6]. It is
supporting advanced personal mobility services. We describe a possible real
situation to present how the call forwarding service works. We have used several
pictures to clarify the distinct steps.

A user of the system, Queca, works in Nokia Research Center and she has a nice
office there. She also has an office in Helsinki University of Technology (HUT) and
she sometimes assists courses in the telecommunications laboratory.

Figure 8a shows how one day, as Queca does not want to loose the calls arriving to
her office in Nokia, she decides to use the Call Forwarding service. She sends a
REGISTER message to the Nokia SIP Server listing her HUT address (queca@hut.fi)
as a forwarding address. The same picture shows how the HUT SIP Server is notified
of the two Queca’s addresses at HUT. For this purpose, she registers both her lab
machine (queca@lab.hut.fi) and her office machine (queca@office.hut.fi).

Last time Queca was at HUT she set up her lab computer to automatically forward
calls back to her Nokia address. Forgetting about this, she restarts her client in the lab
with the same configuration. This forgetfulness will produce an error later on.

user@host

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 20

In Figure 8b Queca’s friend working for Ericsson (jose@ericsson.se), Jose, decides
to call her. He thinks that she is in Nokia so he tries to reach her there. He places a
call to queca@nokia.com. Using DNS the caller resolves nokia.com to the address of
the Nokia SIP server, which receives the call request. The Nokia SIP server checks its
registration and policy databases. Attending to the Queca’s service registration the
SIP server forwards the call request to queca@hut.fi. When the request arrives to the
HUT SIP server, this one does a policy and database lookup determining that there
are two different addresses for Queca at HUT: queca@lab.hut.fi and
queca@office.hut.fi. So the HUT SIP server sends the call to both addresses
simultaneously.

Following we can see what happens when both phones receive the call (Figure 8c).
The office one starts ringing and the other, according to its outdated configuration,
forwards the call back to the Nokia SIP server. This server getting back the call
determines that an error has occurred and returns an error response to the laboratory
machine, which sends an error code as well to the HUT SIP server. This server does
not forward the error to Jose because it simultaneously receives an accepted call from
the office. In the case that this server had received an error from both places the error
would have been forwarded to the server in Nokia.

Meanwhile, Queca answers the phone accepting the incoming call. To do so she
sends a positive response back to the HUT SIP server. It immediately informs the
Nokia SIP server about the new status, which forwards an OK response to Jose.
Then, the communication between Jose and Queca is established (Figure 8d).
The example illustrates a number of salient features of SIP.

� It shows how a call request can cause a “hunt” for a user to ensue hopping
between multiple servers until the final target of the call is found.

� It demonstrates the loop detection features of SIP.

� It proves how a server can fork requests to speed up the process of contacting the
desired user.

� It confirms how SIP servers are used in a call only for the initial transaction.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 21

Figure 8. SIP Mobility example

LAB ORATORY

queca@ lab.hut.fi

SIP SERVER
nokia.com

O FFICE

queca@ office.hut.fi

SIP SERVER
hut.fi

N OKIA RESEAR CH
C ENTER - OFFIC E

queca@ nrc.nokia.com

R EGISTER message

SERVICE: FORW ARDING
ADDRESS TO queca@ hut.fi

R EGISTER message

R EGISTER message

L A B O R A T O R Y

qu eca @ la b .h u t.fi

S IP S E R V E R
nok ia .com

O F F IC E

qu eca @ o ffice .h u t.fi

S IP S E R V E R
hu t.fi

N O K IA R E S E A R C H
C E N T E R - O F F IC E

qu eca @ nrc .no k ia .com

jose @ ericsson.se

 S E R V IC E F O R Q U E C A :

 C A L L F O R W A R D IN G T O H U T .F I

C A LL R E Q U E S T

R E G IS T R A T IO N :

C A LL F O R W A R D E D

C
A

LL

C A LL

LABORATORY

queca@lab.hut.fi

SIP SERVER
nokia.com

OFFICE

queca@office.hut.fi

SIP SERVER
hut.fi

NOKIA RESEARCH
CENTER - OFFICE

queca@nrc.nokia.com

jose@ericsson.se

CALL FORWARDED

RINGRING

ERRO
R

ERROR RESPONSE

S IP SE R VE R
nokia.com O FF ICE

queca@ office.hu t.fi

jose@ ericsson.se

S IP SE R VE R
hut.fi

AC CE P TED
AC CE P TED

O
K

TA LK IN G

a

b

c

d

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 22

3.5 SIP vs H.323

In order to provide useful services, Internet telephony requires a set of control
protocols for connection establishment, capabilities exchange, and conference control
[19]. Two standards emerged to meet this need. One is ITU Recommendation H.323,
and the other is the IETF Session Initiation Protocol (SIP) presented in this chapter
[20]. It is not our proposal to study in detail the H.323 however, here we present
briefly the most outstanding characteristics comparing it with the SIP protocol [1].

These two protocols represent very different approaches to the same problem. H.323
embraces the more traditional circuit-switched approach to signaling based on the
Q.931 ISDN protocol and earlier H-series recommendations [18]. On the other hand,
SIP favors the more lightweight Internet approach based on HTTP by reusing many
of its header fields, encoding rules, error codes, and authentication mechanisms.

In both cases, multimedia data will likely be exchanged via RTP, so that the choice of
protocol suite does not influence Internet telephony QoS. To conclude this chapter,
following we compare the two current protocols in terms of complexity, modularity,
transport protocol neutrality, extensibility and services.

3.5.1 COMPLEXITY

H.323 is a rather complex protocol. Its complexity stems from the hundreds of
elements that it defines, and from its use of several protocol components. There is no
clean separation of these components and many services usually require interaction
between several of them to achieve a simple task. Furthermore, H.323 uses a binary
representation for its messages based on ASN.1 that usually requires special code-
generators to parse.

On the other hand, SIP has only 37 headers each with a small number of values and
parameters that contain more information. SIP encodes its messages as text, similar
to HTTP and the Real Time Streaming Protocol [25]. This leads to simple parsing
and generation, particularly when done with powerful text processing languages such
as XML, Perl and so on [37].

3.5.2 MODULARITY

SIP is a quite modular protocol. It encompasses basic call signaling, user location,
and registration. Advanced signaling is part of SIP, but within a single extension.
QoS, directory accesses, service discovery, session content description and
conference control are all orthogonal, and reside in separate protocols. Moreover, the
modularity of SIP allows it to be used in conjunction with H.323.

H.323 is less modular than SIP. It defines a vertically integrated protocol suite for a
single application. The mix of services provided by the H.323 components
encompass capability exchange, conference control, maintenance operations, basic
signaling, QoS, registration, and service discovery. Furthermore, these are
intertwined within the various sub-protocols within H.323. As they are all integrated
in a single protocol, removing any one of these and use a new or separate protocol for
this functionality is very difficult.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 23

3.5.3 TRANSPORT PROTOCOL NEUTRALITY

SIP can be carried on either TCP or UDP (Figure 9). If desired, SIP can run directly
on top of any protocol offering reliable or unreliable byte stream or datagram
services, including ATM AAL5, IPX, X.25, without any changes to the protocol.
Unfortunately, H.323 requires the use of a reliable transport protocol.

Figure 9. Protocols architecture

3.5.4 EXTENSIBILITY

As the Internet is an open, distributed, and evolving entity, one can expect extensions
to IP telephony protocols to be widespread and uncoordinated. Both, SIP and H.323
provide extensibility mechanisms but a critical issue for this are audio and video
codecs.

SIP uses the Session Description Protocol to convey the codecs supported by an
endpoint in a session. Codecs are identified by string names, so SIP can work with
any codec.

In H.323, each codec must be centrally registered and standardized. Currently, only
ITU developed codecs have codepoints. As many of these carry significant
intellectual property, there is no free sub-28.8 kb/s codec, which can be used in an
H.323 system. In general, this presents a significant barrier to entry for small users.

IPv4 - IPv6

Sonet ATM V.34Ethernet

PPP AAL3/4 AAL5 PPP

TCP UDP

SIPH323 RTSP RSVP RTCP

RTP

MEDIA ENCAPS

 H261 - MEPEG

SIGNALINGSIGNALING QUALITY OF SERVICEQUALITY OF SERVICE
MEDIA TRANSPORTMEDIA TRANSPORT

PH
YS

IC
AL

PH
YS

IC
AL

LI
NKLI
NK

NE
TW

O
RK

NE
TW

O
RK

TR
AN

SP
O

RT
TR

AN
SP

O
RT

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 24

3.5.5 SERVICES

A comparison in these dimensions is somewhat difficult, as SIP and H.323 offer
equivalent services [7]. Both protocols support call control services and provide
capabilities exchange services. In this latter regard, H.323 has a richer set of
functionality. Terminals can express their ability to perform various encodings based
on parameters of the codec, and based on which other codecs are in use. However,
most implementations do not require these, and the basic receiver-capability
indication supported by SIP seems sufficient.

In the area of personal mobility services, SIP provides rich support for that while
H.323’s support is more limited [6]. H.323 was not engineered for wide area
operation; it has no mechanisms for loop detection, preferences cannot be expressed,
and it does not allow a gatekeeper to proxy a request to multiple servers.

Both, H.323 and SIP support multiparty conferences with multicast data distribution.
The problem is that H.323 requires a central control point, called MC, for processing
all signaling and also other mechanisms depending on the conference size. On the
other hand, SIP scales to all different conference sizes, does not require an MC, and
conference coordination is fully distributed.

H.323 supports conference control service while SIP does not provide it. SIP relies
instead on other protocols for this service (e.g. RTCP).

3.5.6 CONCLUSIONS

We have compared SIP and H.323 in terms of complexity, modularity, transport
protocol neutrality, extensibility and services. We have found that SIP provides lower
complexity, reasonable modularity, and rich extensibility. Roughly, both protocols
provide a similar set of services but there are also some differences in the
mechanisms required.

More than one year ago, when SIP seemed to be a powerful but quite unknown
protocol, H323 protocol was leading the signaling for Internet telephony. However,
all big companies quickly started announcing their support for SIP and creating
technical teams to develop applications using SIP. H.323 continues there but SIP is
growing up very quickly and more and more advanced features are implemented
every month.

Definitely anyone looking to converge large voice and data networks also should
ensure that the equipment they buy can be upgraded to support SIP. Essentially, to
bring advanced voice support into the data networking age, protocols must be
targeted directly at actual user services. Products should easily integrate into a real
network with little modification to its underlying infrastructure. The protocols should
be easily extensible without breaking the existing implementations or relying on a
factious standards body for approval. Based on these criteria SIP looks like the
winner in the voice over packet service creation race.

In resume, there is still a place for H.323 but SIP is quickly proliferating and the
interest in the protocol is growing day by day.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 25

Chapter 4

The Session Description Protocol

This chapter defines the Session Description Protocol (SDP) [23]. This protocol is
intended for describing multimedia sessions for the purposes of session
announcement, session invitation, and other forms of multimedia session initiation.
The SDP is used to advertise multimedia conferences and communicate the
conference addresses and conference tool-specific information necessary for
participation.

This protocol is a product of the Multiparty Multimedia Session Control (MMUSIC)
[30] working group of the Internet Engineering Task Force (IETF), RFC 2327 [29].

A general overview and a session example analysis are covered in this chapter.
Further information can be found in [23].

4.1 The Session Description Protocol Overview

The Session Description Protocol (SDP) is used to describe a multimedia session
within a SIP request. The purpose of this protocol is to convey information about
media streams in multimedia sessions allowing people receiving a session description
to participate in a session.

SDP is purely a format for session description. It does not incorporate a transport
protocol, and it is intended to use different transport protocols as appropriate
including the Session Announcement Protocol [26], Session Initiation Protocol [1],
Real-Time Streaming Protocol [25], electronic mail using the MIME extensions, and
the Hypertext Transport Protocol.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 26

In general, SDP must convey sufficient information to enable joining a session (with
the possible exception of encryption keys) and to announce the resources to be used
to non-participants that may need to know.

An SDP description includes the following information:

� Session name and purpose.
� Time/s the session is active.
� The media comprising the session.
� Information on how to receive those media such as addresses, ports and formats.
� Additional information like the bandwidth to be used in the conference and

contact information for the person responsible of the session established.

SDP is intended to be of general purpose so that it can be used for a wider range of
network environments and applications than just multicast session directories.
However, it is not intended to support negotiation of session content or media
encodings.

4.1.1 MEDIA INFORMATION

In general, there is a lot of information carried in a session description and the media
information is essential for our implementation. It includes:

� The type of media (video, audio, etc).
� The transport protocol (RTP/UDP/IP, H.320, etc).
� The format of the media (H.261 video, MPEG video, etc).

 For an IP multicast session, the following information is also conveyed:

� Multicast address for media.
� Transport Port for media.

This address and port are the destination address and destination port of the multicast
stream, whether being sent, received, or both.

 For an IP unicast session, the following information is conveyed:

� Remote address for media.
� Transport port for contact address.

The semantics of the address and the port depend on the media and transport protocol
defined. By default, this is the remote address and remote port to which data is sent,
and the remote address and local port on which to receive data. However, some
media may define to use these to establish a control channel for the actual media
flow.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 27

4.1.2 AN SDP DESCRIPTION STRUCTURE

An SDP session description consists of a number of lines of text of the form:
<type>=<value> Where <type> is always exactly one character and is case-
significant, and <value> is a structured text string whose format depends on <type>.
It also will be case-significant unless a specific field defines otherwise.

Whitespace is not permitted either side of the ‘=’ sign. In general <value> is either a
number of fields delimited by a single space character or a free format string.

An announcement consists of a session-level section followed by zero or more
media-level sections. The session-level part starts with a ‘v=’ line and continues to
the first media-level section. The media description starts with a ‘m=’ line and
continues to the next media description or end of the whole session description.

The permitted type fields in a SDP session are shown in Table 4. Some lines are
obligatory and others are optional (marked with a “*”) but all of them must exactly
appear in the order given here.

SESSION DESCRIPTION
TYPE DESCRIPTION

v PROTOCOL VERSION

o OWNER/CREATOR AND SESSION IDENTIFIER

s SESSION NAME

i* SESSION INFORMATION

u* URI OF DESCRIPTION

e* EMAIL ADDRESS

p* PHONE NUMBER

c* CONNECTION INFORMATION (**)
b* BANDWIDTH INFORMATION

z* TIME ZONE ADJUSTMENTS

k* ENCRYPTION KEY

a* ZERO OR MORE SESSION ATTRIBUTE LINES

(**) N OT REQUIRED IF INCLUDED IN ALL MEDIA

TIME DESCRIPTION
TYPE DESCRIPTION

t TIME THE SESSION IS ACTIVE

r* ZERO OR MORE REPEAT TIMES

MEDIA DESCRIPTION
TYPE DESCRIPTION

m MEDIA AND TRANSPORT ADDRESS

i* MEDIA TITLE

c* CONNECTION INFORMATION (**)
b* BANDWIDTH INFORMATION

k* ENCRYPTION KEY

a* ZERO OR MORE SESSION ATTRIBUTE LINES

(**) O PTIONAL IF INCLUDED AT SESSION-LEVEL

Table 4. SDP descriptions permitted type fields

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 28

SDP parsers must ignore any announcement that contains a <type> letter that it does
not understand. The attribute mechanism is the primary means for extending SDP and
tailoring it to particular applications or media. Some attributes have a defined
meaning but others may be added on an application, media or session specific basis.
A session directory must ignore any attribute that it does not recognize.

4.2 A SDP Session Example

In order to clarify the concepts presented previously, next we will introduce an SDP
session example, see Figure 10. Some fields are mandatory and others are suggested
depending on the application. The most relevant ones such as protocol version,
origin, session name, time, connection data and media announcement are described in
detail.

Figure 10. SDP Session Example

4.2.1 PROTOCOL VERSION

The ‘v=’ field gives the version of the Session Description Protocol. There is no
minor version number.
In the example: v=0

4.2.2 ORIGIN

The ‘o=’ field gives the originator of the session (their username and the address of
the user's host) plus a session id and session version number.
In the example: o=queca 2890844526 2890842807 IN IP4 130.233.154.68

The general field structure is:

o=<username> <session id> <version> <network type> <address type><address>

EXAMPLE

v=0
 o=queca 2890844526 2890842807 IN IP4 130.233.154.68
 s=ICW SIP

i=A session for voice transmission using SIP
 u=http://www.hut.fi/staff/Queca/sdp.03.ps
 e=queca@tct.hut.fi (Queca Espigares)
 c=IN IP4 130.233.154.68

t=2873397496 2873404696

m=audio 49170 RTP/AVP 0

 m=video 51372 RTP/AVP 31

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 29

� <username> is the user's login on the originating host, or it is ‘-‘ if the
originating host does not support the concept of user ids. <username> must not
contain spaces.

� <session id> is a numeric string such that the tuple of <username>, <session id>,
<network type>, <address type> and <address> form a globally unique identifier
for the session.

� The method of <session id> allocation is up to the creating tool, but it
has been suggested that a Network Time Protocol (NTP) timestamp be
used to ensure uniqueness [31].

� <version> is a version number for this announcement. It is needed for
proxy announcements to detect which of several announcements for the
same session is the most recent. Again its usage is up to the creating tool,
so long as <version> is increased when a modification is made to the
session data. For this reason, it is recommended that an NTP timestamp
is used.

� <network type> is a text string giving the type of network. Initially ‘IN’
is defined to have the meaning ‘Internet’.

� <address type> is a text string giving the type of the address that
follows. Initially ‘IP4’ and ‘IP6’ are defined.

� <address> is the globally unique address of the machine from which the
session was created. For an address type of IP4, this is either the fully
qualified domain name of the machine, or the dotted-decimal
representation of the IP version 4 address of the machine. For an address
type of IP6, this is either the fully qualified domain name of the machine,
or the compressed textual representation of the IP version 6 address of
the machine. For both IP4 and IP6, the fully qualified domain name is
the form that SHOULD be given unless this is unavailable, in which case
the globally unique address may be substituted. A local IP address
MUST NOT be used in any context where the SDP description might
leave the scope in which the address is meaningful.

In general, the ‘o=’ field serves as a globally unique identifier for this version of this
session description, and the subfields excepting the version taken together identify
the session irrespective of any modifications.

4.2.3 SESSION NAME

The ‘s=’ field is the session name. There must be one and only one ‘s=’ field per
session description, and it must contain ISO 10646 characters.
In the example: s=ICW SIP

4.2.4 CONNECTION DATA

The ‘c=’ field contains connection data. In the example: c=IN IP4 130.233.154.68

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 30

The general field structure is:

c=<network type> <address type> <connection address>

A session announcement must contain one ‘c=’ field in each media description or a
‘c=’ field at the session-level. It may contain a session-level ‘c=’ field and one
additional ‘c=’ field per media description, in which case the per-media values
override the session-level settings for the relevant media.

� <network type> is a text string giving the type of network. Initially ‘IN’ is
defined to have the meaning ‘Internet’.

� <address type> allows SDP to be used for sessions that are not IP based.
Currently only IP4 is defined.

� <connection address> is the third sub-field. For IP4 addresses, the connection
address is defined as follows:

If the session is not multicast, then the connection address contains the fully
qualified domain name or the unicast IP address of the expected data source or
data relay or data sink as determined by additional attribute fields.

4.2.5 TIME SESSION IS ACTIVE

In the ‘t=’ field, the first and second sub-fields give the start and stop times for the
conference respectively. These values are the decimal representation of Network
Time Protocol (NTP) time values in seconds [31].

In the example: t=2873397496 2873404696

The general time field structure is:

t=<start time> <stop time>

If the stop-time is set to zero, then the session is not limited, though it will not
become active until after the start-time. If the start-time is also zero, the session is
regarded as permanent.

4.2.6 MEDIA ANNOUNCEMENTS

A session description may contain a number of media descriptions. Each media
description starts with an ‘m=’ field, and is terminated by either the next ‘m=’ field
or by the end of the session description.

In the example: m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=application 32416 udp wb

The general media field structure is:

m=<media> <port> <transport> <fmt list>

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 31

A media field also has several sub-fields:

1. The first sub-field is the media type. Currently defined media are included in
Table 5.

MEDIA TYPE
Application

Audio
Control

Data
Video

New emerging
communication modalities

Table 5. Media type

The difference between application and data is that the former is a media flow
such as whiteboard information, and the latter is bulk-data transfer such as
multicasting of program executables which will not typically be displayed to the
user. Control is used to specify an additional conference control channel for the
session.

2. The second sub-field is the transport port to which the media stream will be sent.
The meaning of the transport port depends on the network being used as
specified in the relevant ‘c=’ field and on the transport protocol defined in the
third sub-field. Other ports used by the media application, such as the RTCP port,
should be derived algorithmically from the base media port.

For transports based on UDP, the value should be in the range 1024 to 65535
inclusive. For RTP, only the even ports are used for data and the corresponding
one-higher odd port is used for RTCP [24]. For example, ‘m=video 49170/2
RTP/AVP 31’ would specify that ports 49170 and 49171 form one RTP/RTCP
pair and 49172 and 49173 form the second RTP/RTCP pair. RTP/AVP is the
transport protocol and 31 is the format.

3. The third sub-field is the transport protocol. The transport protocol values are
dependent on the address-type field in the ‘c=’ fields. Thus a ‘c=’ field of IP4
defines that the transport protocol runs over IP4. For IP4, it is normally expected
that most media traffic will be carried as RTP over UDP. The following transport
protocols are preliminarily defined:

� RTP/AVP - the IETF Real-time Transport Protocol using the
Audio/Video Profile carried over UDP.

� UDP - User Datagram Protocol.

The main reason to specify the transport-protocol in addition to the media format
is that the same standard media formats may be carried over different transport
protocols even when the network protocol is the same. In addition, relays and
monitoring tools that are transport-protocol-specific but format-independent are
possible.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 32

4. The fourth and subsequent sub-fields are media formats. For audio and video it
will normally be a media payload type as defined in the RTP/AVP.
When a list of payload formats is given, this implies that all of these formats may
be used in the session, but the first of these formats is the default format for the
session.

For media whose transport protocol is RTP, SDP can be used to provide a
dynamic binding of media encoding to RTP payload type.

An example of a dynamic payload type is 16 bit linear encoded stereo audio
sampled at 16KHz. If we wish to use dynamic RTP/AVP payload type 98 for
such a stream, additional information is required to decode it:

m=video 49232 RTP/AVP 98
a=rtpmap:98 L16/16000/2

The general form of a rtpmap attribute is:

a=rtpmap:<payloadtype><encodingname>/<clockrate>[/<encodingparameters>]

For audio streams, <encoding parameters> may specify the number of audio
channels. This parameter may be omitted if the number of channels is one
provided no additional parameters are needed. For video streams, no encoding
parameters are currently specified.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 33

Chapter 5

Columbia University SIP Server1

In this chapter, we describe the SIP Server from Columbia University [58]. It is
called sipd and we have used it for the development and testing of the Internet Call
Waiting service that will be introduced in the next chapter.

The code runs on Solaris, FreeBSD 3.0, Linux, Windows NT/95/98, and other Unix
platforms. It is written in C to perform efficiently behavior in all kinds of possible
architectures. We have chosen the Unix version to be run in one of the workstations
of the Telecommunications Technology Laboratory at HUT in Espoo, Finland [57].

An implementation overview, analysis of the main functions and additional libraries
required are covered in this chapter.

1Copyright 1998-1999 by Columbia University; all rights reserved Sipd is subject to licensing. Permission to use,
copy, modify, and distribute this software and its documentation for not-for-profit research and educational purposes
and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that the
copyright notice and warranty disclaimer appear in supporting documentation, and that the names of the copyright
holders or any of their entities not be used in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Use of this software in whole or in parts for commercial advantage and by
for-profit organizations requires a license.

The copyright holders disclaim all warranties with regard to this software, including all implied warranties of
merchantability and fitness. In no event shall the copyright holders be liable for any special, indirect or consequential
damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortuous action, arising out of or in connection with the use or performance of this software.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 34

5.1 Columbia University implementation

Sipd is a SIP redirect, proxy and registration server that provides name mapping, user
location and scripting services (Figure 11) [1]. It can use external routines to do the
actual work of resolving aliases (including group names), mapping names and
locating users. It also allows users to register their current location with the server.
Users can be registered at multiple locations [3]. Each user can register a script in
any scripting language that will be executed when receiving a call [55].

Figure 11. Columbia University SIP server

The server currently understands the following requests:

� ACK
� BYE
� CANCEL
� INVITE (can be authenticated)
� OPTIONS
� REGISTER (can be authenticated).
If the user is not registered or cannot be found using the dynamic user location
program, the server returns a client error: ‘Temporarily Not Available’ code number
480.

5.1.1 SYNOPSIS

Running the server can be done in different ways depending on the arguments added
to the main program.

sipd [-s configfile][-p port][-v][-X]
� [-s ServerRoot]

It sets ServerRoot where the server expects to find the configuration file.
� [-v]

It makes the server print out debugging information to stdout.

ReceiveUDP/ReceiveTCP locateuser in SIP
server database

Locate other contact for the same user LDAP server
(remote)

Aliases/Namemapper
(local)

Process REQUEST/RESPONSES

Policy Handler

PROXY REDIRECT CGI

sendrequest/sendresponse according to the policy

Reg. Record User

Columbia University - SIP server

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 35

� [-p port]
It overrides the Port configuration variable.

� [-X]
It runs in single-process mode for internal debugging purposes only.

5.1.2 CONFIGURATION

The server is configured through the file sipd.conf. The server looks for the file by
default in the directory where the server was started. Alternatively, the location of the
configuration file can be specified via the -s command line parameter. The file
should be in the following format:

� Aliases
It is the path name of the name mapping function invoked first, e.g., aliases. The
server appends the user name (not the whole request URI) to the name given. The
program is expected to return on stdout zero or more lines, each containing one entry
of the form user, user@host or user@host.domain. If the response has more than one
line, it is assumed that the name refers to a group rather than an individual. In that
case, the server returns a redirection response ‘Multiple Choices’ (300 code number)
and the list of responses. If there is one match, it is used as an index into the
registration database.

� AuthUserFile
The AuthUserFile directive sets the name of a textual file containing the list of users
and passwords for user authentication. Filename is the path to the user file. If it is not
absolute (if it doesn't begin with a slash) then it is treated as relative to the ServeRoot.
Each line of the user file contains a username followed by a colon, followed by the
crypt() encrypted password. The behavior of multiple occurrences of the same user is
undefined. The program automatically converts the file into an in-memory hash table
when first used, so that access to passwords is efficient.

� CGITimeout
It is the time in seconds that the program waits for CGI script to return an answer.
Default is set to 15 seconds [8].

� DefaultReg
If a registration contains a contact header that does not have an action parameter, it
fills in this action. Default is redirect.

� DisplayAmbiguous
This flag determines whether the server will return the contact list in case of
ambiguous response (more than one match). Default is false.

� Domain reg-ex
A regular expression defining the domains that the server accepts registrations from.
If the host part of the To header does not match the regular expression, the server
returns a status of ‘Client Not Found’ (404 code number).

� ErrorLog
The ErrorLog directive sets the name of the file to which the server will log any
errors it encounters. If the logfile does not begin with a slash (/), then it is assumed to
be relative to the server root. If the logfile begins with a pipe (|), then it is assumed to
be a command to spawn to handle the ErrorLog. The default is stderr.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 36

� Expires
Registrations expire after the number of seconds given in the Expires configuration
option. The default is 3600 that means one hour.

� ForeignDomain
If the request contains a URI with a domain that does not match the Domain reg-ex,
the server can either proxy the request, redirect it (possibly substituting the IP
address for the host name) or reject the request.

� Group
The Group directive sets the group under which the server will answer requests. In
order to use this directive, the stand-alone server must be run initially as root. Unix-
group is one of:

� A group name: refers to the given group by name.
� # followed by a group number: refers to a group by its number.

It is recommended to set up a new group specifically for running the server. Some
administrators use nobody as a user, but this is not always possible or desirable.

� HelpResolve
The server returns redirect responses with numeric (dotted-quad) IP addresses instead
of host names, relieving the client from doing name resolution. Defaults to ‘false’.

� LdapServerName
It defines the hostname of LDAP server to contact for user lookups [32].

� LdapPort
It defines the port number of LDAP server. Defaults to 389.

� LdapBaseObject
Specifies the DN of the base object for LDAP search. The search proceeds down the
object's subtree.

� Namemapper
The path name of the name mapping function invoked second, e.g., namemapper. The
program is invoked only if the first one did not return any results. The server appends
the user name (not the whole request URI) to the name given. The program is
expected to return on stdout zero or more lines each containing one entry of the form
'X user [displayname]', 'X user@host [displayname]' or 'X user@host.domain
[displayname]', where 'X' is an arbitrary string and the optional displayname
designates the real name of the user. (Namemapper uses the string X to designate the
type of match found.) If there is more than one match, the server returns 485
(Ambiguous) and the list of matches in Location headers, with the displayname as a
comment. If there is one match, it is used to look up the user in the registration
database. If there is no match, the server returns 604 (Does not exist). Thus, even if
the username given in the request URI is already a system user name, the
namemapper program must return this name.

� PidFile
The PidFile directive sets the file to which the server records the process id of the
daemon. If the filename does not begin with a slash (/), then it is assumed to be
relative to the ServerRoot. It is often useful to be able to send the server a signal, so
that it closes and then reopens its ErrorLog and TransferLog, and re-reads its
configuration files. This is done by sending a SIGHUP (kill -1) signal to the process
id listed in the PidFile.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 37

� Port portnumber
The port number the server listens on for both TCP and UDP. Default is 5060.

� PrivateKey
It is the key for digest authentication.

� ProxyName
The hostname which this machine should put in its Via headers. Default is the
canonicalized local hostname. Must be a name, which DNS resolves to this server.

� ProxyRecursion
Whether the server should recursively process 3xx-responses containing Contact
headers with sip URI's when proxying, or just return 3xx responses to the originator
the same way any other failure status would be returned.

� Registry
The name of the database file used to record user locations, relative to ServerRoot.
Defaults to ‘registry’.

� RequestLog
Each RequestLog entry creates one request log file. The first argument gives the
name of the file to log to, the second the format to be used. If the name of the file
starts with '|', it is assumed to be a program that will receive, via stdin, the log file
output.

Table 6 shows the format. It is a string containing literal text and the following
special escape sequences, borrowed from the Apache log file configuration. The
format can be omitted and defaults to "%h %l %u %t \"%r\" %s %b".

%...a Remote IP-address

%...{env}e The contents of the environment variable env.

%...h Remote host name (currently also the IP address).

%...{header}i The input (request) header with name header.

%...{header}o The output (response) header with name header.

%...P The process ID of the child that serviced the request.

%...r First line of request.

%...s Status of response.

%...U The Request-URI.

%...u Remote user if authentication is used, ‘-‘ otherwise.

%...{timeformat}t The current time, in the form given by timeformat, which
should be in a form acceptable to strftime(3). The
timeformat defaults to the common log file date format,
‘[day/month/year:hour:minute:second zone]’.

%...T The time taken to serve the request, in seconds, with a
resolution of 1/100 second.

Table 6. RequestLog file format

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 38

� ServerName FQDN
Defines the domain name of the server, e.g., cs.columbia.edu

� ServerRoot directory
Defines the location of the server configuration files, typically ‘.’

� ThirdPartyReg true | false
Whether the server should allow third parties to register each other, or insist that
users only register themselves.

� TimeOut seconds
The TimeOut directive defines the amount of time sipd will wait for completion of a
batch of proxied requests. A batch is all requests with similar quality (q) values.
Default is 30 seconds.

� User unix-userid
The User directive sets the userid as which the server will answer requests. In order
to use this directive, the standalone server must be run initially as root. Unix-userid is
one of:

� A username refers to the given user by name.
� # Followed by a user number refers to a user by their number.

The user should have no privileges which result in it being able to access files which
are not intended to be visible to the outside world, and similarly, the user should not
be able to execute code which is not meant for sipd requests. It is recommended that
you set up a new user and group specifically for running the server. Some administers
use user nobody, but this is not always possible or desirable.

If the server is started as a non-root user, it will fail to change to the lesser-privileged
user, and will instead continue to run as that original user.

� UserLocation
It is the path name of the user location program such as lswhod. The program is
invoked with the user name and is expected to return on stdout zero or more lines
each containing an entry. Figure 12 gives an example of a configuration file
presenting all the directives described previously.

Figure 12. Configuration file example.

ServerRoot .
ErrorLog error_log
ErrorLog stderr
#ErrorLog syslog
ServerName tele.tct.hut.fi
Domain hut.fi
Aliases tools/aliases/aliases
Namemapper tools/namemapper/namemapper
UserLocation tools/lswhod/lswhod.tcl
AuthMethod Digest
#AuthMethod Basic
AuthMethod pgp
PrivateKey 1
AuthUserFile files/passwd

PgpPubRing .pgp/pubring.pkr
PgpSecRing .pgp/secring.skr
PgpPvtPass dummykey
RequestLog access_log "%h %u %t \"%r\" %s HOST=%{HOST}e From=%{From}i
%T"
RequestLog "|tee /tmp/sipoutput.$USER" "%h %u %t \"%r\" %s HOST=%{HOST}e
From=%{From}i %T"
#LdapServerName ldap.columbia.edu
#LdapPort 389
#LdapBaseObject "o=Columbia University,c=US"
DisplayAmbiguous true
#HelpResolve true
DoProxyRecursion true
ThirdPartyReg false
ForeignDomain proxy
DefaultReg proxy

EXAMPLE FILE

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 39

5.2 Sipd functions

The program starts by reading the configuration file using the routines in config.c.
Then it opens a UDP and TCP socket to receive requests. The thread ReceiveTCP,
with each new connection obtaining a new thread running ReceiveTCPRequests
handles TCP connections. The thread ReceiveUDP handles UDP requests (unicast or
multicast).

Each request is read and, once completely read, handed to RequestProcess(). That
routine parses the SIP-specific headers and then invokes the request-specific
function. The ACK request simply sets the ACK flag in the appropriate request. Each
INVITE request creates a new thread, while REGISTER requests are handled within
the same thread. To understand the behavior we need to know which are the sipd
functions and what are they used for.

base64.c is a group of utility functions that convert to and from base-64 strings, as
used in Authorization headers.

config.c reads server configuration files, where each line is of the form ‘parameter:
value’.

dstring.c contains dynamic string utility functions.

error.c contains error handling and debugging utility functions.

host2ip.c converts host name to IP address.

http.c parses generic HTTP headers like Authenticate, Authorization, Content-
Length, Content-Type, Date, Server and User-Agent.

invite.c handles the INVITE request.

locate_user.c checks if the user is currently logged in or not by calling the lswhod.pl.
If the user is currently logged in it gives the machine names, otherwise, it calls
aliases to find the user login name. If it can not find in aliases, then it calls to the
namemapper. Next, it returns the result if the locating was successful and a null
string otherwise. Since the namemapper takes time, it sends back a 100 message to
the client.

mime.c handles MIME datatype mapping.

parser.c parses RFC822-style requests and responses.

register.c handles REGISTER request.

request.c. Requests are stored in an internal data structure so that the repeated ones
can simply be answered by the current status of the request. A pointer to the Request
structure is created the head of list of incoming request.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 40

� RequestCreate initilizes and allocates memory for a request.

� RequestSearch searches the list of requests to check if the request with
unique Call-ID+SeqNumber exists already or not. Then it returns true or
false accordingly. If the request exists and it is an ACK request, it deletes the
request entry. Otherwise it does nothing.

� RequestFree frees the given SIP request.

� RequestProcess obtains the version, method, protocol, seq number, call ID
and other header fields of the SIP request.

response.c generates provisional and final SIP responses.

� void ResponseInit(void) initializes a response.

� int Response(Request *r, int status, char *reason, DString *location, char
*content_type, char *body, int content_length) sends the message back to a
client including the From, To, Via, Call-ID, Cseq and Location headers. If
the user is not found, no Location header will be returned.

sip.c parses SIP-specific headers like Call-ID, CSeq, Expires, From, Location,
Subject, To, Via.

sip-rs.c is the main program.

strdupn.c creates duplicate of string, with its own memory.

tcp.c handles TCP connections.

udp.c handles UDP requests.

uri.c parses URIs into their components.

5.3 Sipd additional libraries

Sipd uses two libraries that are not built with it: CLC and gdbm. The latter was
developed by a free software foundation called GNU [56] while the CLC is part of a
C Collection libraries from Columbia University [50]. The following is a brief idea
about their main purposes.

Gdbm is a library of database functions that uses extensible hashing and works
similar to the standard UNIX database management functions.

The basic use of gdbm is to store key-data pairs in a data file. Each key must be
unique and each key is paired with only one data item. The keys can not be directly
accessed in sorted order. The key-data pairs are stored in a gdbm disk file, called a
gdbm database. An application must open a gdbm database to be able to manipulate
the keys and data contained in the database. Gdbm allows an application to have
multiple databases open at the same time.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 41

On the other hand, CLC is the acronym for my C Libraries Collection, a group of
general purpose C libraries: dict, fsma, misc, pq, pset, sio, str, timer and xlog. Next
we will give a short description of what fsma and dict do. Those are just the ones that
sipd needs from CLC.

Dict: support for various types of data structures, including double linked lists, hash
tables and binary search trees (which can also be balanced using the red-black
balancing algorithms). The data structures support operations for
insertion/deletion/location of an object, as well as operations for finding the
minimum/maximum object and for enumeration of all objects.

Fsma: support for quick memory allocation-deallocation of fixed size objects.

A basic build of sipd on our laboratory machines looks like this:

./configure --with –gdbm
=/home/queca/SIP_1/sip_code/libreria/gdbm/lib --with-
clc=/home/queca/SIP_1/sip_code/libreria/clc/libs/lib

make depend

make

This builds everything to start running the SIP CU server.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 42

Chapter 6

Scripting new services: The Call
Processing Language

The Call Processing Language (CPL) is a language that can be used to describe and
control Internet telephony services [34]. This mechanism is not tied to any particular
signaling architecture or protocol (H.323, SIP).

In this chapter, we outline the tools used to define the Internet Call Waiting service
and compare the XML with other languages such as HTML [33].

The Internet Call Waiting (ICW) service is studied in detail in Chapter 7 and
implemented using a CPL. For that purpose, we create a script describing the service
that later is uploaded to a SIP server. So, it is the user who easily writes the service
desired. The SIP server execution stores the service description for further
performance.

6.1 The Call Processing Language

The Call Processing Language (CPL) is designed to be implementable on either
network servers or user agent servers (UAS) [35]. It is simple, extensible, easily
edited by graphical clients, and independent of operating system or signaling
protocol. It is suitable for running on a server where users may not be allowed to
execute arbitrary programs, as it has no variables, loops, or ability to run external
programs.

Syntactically, CPL scripts are represented by XML documents, so parsing them is
easy and many parsers for them are publicly available [41]. The structure of the
language maps closely to its behavior, so an editor can understand any valid script,
even ones written by hand. The language is also designed so that a server can easily

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 43

confirm scripts validity at the time they are delivered to it, rather that discovering
them while a call is being processed.

6.1.1 THE CPL NETWORK MODEL

In this model, an Internet telephony network contains two types of components: end
systems and signaling servers. End systems are devices, which originate and/or
receive signaling information and media. An end system can originate, accept, reject
a call, or forward incoming calls. Signaling servers are devices, which relay or
control signaling information. In SIP, they are proxy servers, redirect servers, or
registrars [1].

Signaling servers can perform three types of actions on call setup information. They
can forward it on to one or more other network or end systems, returning one of the
responses received (proxy it). They can also return a response informing the sending
system of a different address to which it should send the request (redirect it). Finally,
they can inform the sending system that the setup request could not be completed
(reject it).

When an end system places a call, the call establishment request can proceed by a
variety of routes through components of the network. To begin with, the originating
end system must decide where to send its requests. There could be, for example, two
possibilities: the originator may be configured so that all its requests go to a single
local server; or it may resolve the destination address to locate a remote signaling
server or end system to which it can send the request directly.

Once the request arrives at a signaling server, that server uses its user location
database, its local policy, DNS resolution, or other methods, to determine the next
signaling server or end system to which the request should be sent. A request may
pass through any number of signaling servers: from zero (in the case when end
systems communicate directly) to every server on the network.

6.1.2 SCRIPTS: WHAT, WHICH, WHERE AND HOW

In this section, we answer some questions to clarify scripts behavior:

1) What does a script do?
Specifically, a script replaces the user location functionality of a signaling server.
Signaling server typically maintains a database of locations where a user can be
reached; it makes its proxy, redirect, and rejection decisions based on the
contents of that database. A CPL script replaces this basic database lookup
functionality; it takes the registration information, the specifics of a call request,
and other external information it wants to reference (e.g. services requested), and
chooses the signaling actions to perform [34].

Abstractly, a script can be considered as a list of condition/action pairs; if some
attribute of the registration, request, and external information matches a given
condition, then the corresponding action is taken.

2) Where can users have scripts?
Users can have CPL scripts on any network server which their call establishment
requests pass through and with which they have a trust relationship. Scripts

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 44

would typically perform different functions, related to the role of the server on
which they reside.

3) Which script is executed in the server? And when?
CPL scripts are usually associated with a particular Internet telephony address.
When a call establishment request arrives at a signaling server which is a CPL
server, that server associates the source and destination addresses specified in the
request with its database of CPL scripts; if one matches, the corresponding script
is executed.

Once the script has been executed, if it has chosen to perform a proxy action, a
new Internet telephony address will result as the destination of that proxying.
Once this has occurred, the server again checks its database of scripts to see if
any of them are associated with the new address; if one is, that script is also
executed.

In general, in an Internet telephony network, an address will denote one of two
things: either a user, or a device. A user address refers to a particular individual,
for example sip:queca@example.com, regardless of where that user actually is or
what kind of device she is using. A device address, by contrast, refers to a
particular physical device, such as sip:x26063@phones.example.com.

6.2 XML: the bridge between SGML and HTML

XML is the language chosen to implement the ICW service. In this section we briefly
describe and compare it with other also popular languages. XML characteristics such
as extensibility, easily writeable and parseable by both humans and machines, easily
implementable and independent of underlying signaling details are commented [39].

6.2.1 NOTES OF XML STORY

As far back as the sixties, IBM scientists were working on a Generalized Markup
Language (GML) for describing documents and their formatting. In 1986 the
International Standards Organization (ISO) adopted a version of this standard called
Standard Generalized Markup Language (SGML-ISO 8879). SGML offers a highly
sophisticated system for marking up documents so that their appearance is
independent of specific software applications. It is big, powerful, filled with options,
and well suited for large organizations that need exacting document standards.

But early in the game, it became apparent that SGML's sophistication made the
language quite unsuitable for quick and easy applications. For that, we needed a
simplified markup system, one at which practically anyone could quickly gain
proficiency. Enter HyperText Markup Language (HTML), which is little more than
one specific SGML document type, or Document Type Definition (DTD) [38]. It is
easy to learn and to implement, but the problem with HTML, however, was that it
quickly proved to be too simple. As soon as authors started demanding multimedia
and design capabilities, the language started experiencing severe growing pains.
Undoubtedly, the main problem is that HTML is not extensible while SGML is.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 45

The question, then, is how to capture SGML's extensibility without retaining the
complexity. In other words, the issue is how to bridge the gap between SGML and
HTML. The answer is Extensible Markup Language, better known as XML [38].

6.2.2 WHY XML?

Nowadays, other known programming languages such as PERL, TCL, HTML,
SGML and C/C++ could have been chosen [54]. So, why XML?

XML is more than a markup language it is a metalanguage. This means that XML is
a language that allows you to describe languages.

XML lets developers to set standards defining the information that should appear in a
document, and in what sequence. XML makes it possible to define the content of a
document separately from its formatting, making it easy to reuse that content in other
applications or for other presentation environments.

XML provides a basic syntax that can be used to share information between different
kinds of computers, different applications, and different organizations without
needing to pass through many layers of conversion.

XML provides a simple format that is flexible enough to accommodate diverse needs.
Even developers performing tasks on different types of applications with different
interfaces and different data structures can share XML formats and tools for parsing
those formats into data structures that the applications can use. XML offers many
advantages, including:

� Simplicity . XML documents are built upon a core set of basic nested structures.
While the structures themselves can grow complex as layers and layers of detail
are added, the mechanisms underlying those structures require very little
implementation effort, from either authors or developers. Furthermore, XML
rigid set of rules helps make documents more readable to both humans and
machines.

� Extensibility . XML is extensible in two senses. First, it allows developers to
create their own Document Type Definition (DTD) [38], effectively creating
'extensible' tag sets that can be used for multiple applications. Second, XML
itself is being extended with several additional standards that add styles (e.g.
XSL), linking, and referencing ability to the core XML set of capabilities.

� Interoperability . XML can be used on a wide variety of platforms and
interpreted with a wide variety of tools. Because the document structures behave
consistently, parsers that interpret them can be built at relatively low cost in any
of a number of languages such as C++, C, JavaScript, Tcl, and Python [51].

� Openness. XML documents are considerably open and anyone can parse a well-
formed XML document.

� Applications. XML can be used in a couple of different ways. One is for data
interchange between humans and machines, such as from a Web server to a user's
browser. The other is for data exchange between applications, or from machine
to machine.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 46

Linking possibilities could be also included in advantages list. To illustrate this,
Figure 13 presents a script that rings a call at a standard location and, if the recipient
is not available there, forwards the call to a voicemail server instead. Since we want
the same action to occur on busy as on no answer, we define a link on one node. This
allows other nodes to reference that link rather than repeat parts of the script.

Figure 13. XML example

Document Type Definition (DTD) is a well-known self-describing and structured
information required at the beginning of the validated scripts. The DTD identifies the
root element of the document and may contain additional declarations. All XML
documents must have a single root element that contains all of the content of the
document. Additional declarations may come from an external DTD, called the
external subset, or be included directly in the document, the internal subset, or both
[38]. In Annex A we present a complex XML example that references an external
DTD.

Writing in XML seems to be quite easy but also different technologies can be
followed in this area: Document Type Definitions and XML schemas. Although,
neither are strictly required for XML development, both DTDs and XML Schemas
are important parts of the XML toolbox. DTDs have been around for over twenty
years as a part of SGML, while XML Schemas are relative newcomers. Though they
use very different syntax and take different approaches to the task of describing
document structures, both mechanisms definitely occupy the same turf. The W3C
seems to be grooming XML Schemas as a replacement for DTDs, but it is not yet
clear how quickly the transition will be made. DTDs are here-and-now, while XML
Schemas, in large part, are just coming. Brother languages such as Perl, Tcl and so on
could also wake up the attention of people describing data.

 <call>
 <!-- Proxy the call to queca -->

 <location url="sip:queca@quecapc.example.com">

 <proxy timeout="8s">

 <!-- When busy, forward to voicemail -->

 <busy>
 <location url="sip:queca@voicemail.example.com" merge="clear" id="voicemail" >

 <proxy />
 </location>

 </busy>

 <!-- When there is no answer, jump to the voicemail link above and also forward to voicemail -->

 <noanswer>

 <link ref="voicemail" />
 </noanswer>

 </proxy>
 </location>

 </call>

<?xml version="1.0" ?>
 <!DOCTYPE call SYSTEM ”ex.dtd">

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 47

Chapter 7

The Internet Call Waiting Service

The Internet Call Waiting Service (ICW) enables online users with a single analog
telephone line to monitor and manage incoming phone calls from a personal
computer while they were using the same line for Internet access or attending another
call.

In this chapter, first we explain how the service works and we conclude analyzing
step by step the project structure paying attention to all the components involved in:
the XML parser, the UAS/UAC and the CPL method [42][35].

7.1 Defining the service

The idea of the ICW implementation is based on a graphical oriented way to notify
the new call. ICW service will pop-up a dialog box advising the callee of a new
incoming call. For that reason we decided to design the window using bright colors
and attractive figures. We also made our own logotype for the program called
“IPtele”. The logotype including snowflakes gets the idea from the country where we
developed the project, Finland (Figure 14).

Figure 14. IPtele logotype

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 48

The service works as follows. Firstly, the user has to send the registration
information to the server. That information contains the XML script defining the
ICW service, which will be stored in the SIP server to manage future calls [3]. Figure
15 shows the main IPtele window where the user can choose between: opening two
different boxes “REGISTRATION” and “SET UP CALL” or exiting via “EXIT”
button.

Figure 15. IPtele window

For registering, the user selects “REGISTRATION” radio buttons box (Figure 16).
Thereafter he/she chooses a service (call forwarding not supported) and then goes to
“INSERT REG INFO”. After selecting that button a new window appears on the
screen to insert his/her name and domain (Figure 17). The user can also return to the
main IPtele window using “CANCEL” button in the “REGISTRATION” window.

As an example, to register the user “queca@pc2.tct.hut.fi” we would have to write:
� “NAME” = queca
� “DOMAIN” = pc2.tct.hut.fi

Figure 16. Selecting services window

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 49

Figure 17. Registering window

When the name and domain are written, the user has to press ENTER button on the
keyboard. After that, it is necessary to select “ACCEPT” to complete the registration.

If the user wishes so, he/she can also make a call. Opening the “SET UP CALL”
he/she must select “INSERT THE ADDRESS”(Figure 18). After that a new window
has to be filled in. This window is required to have the callee information to create
the INVITE request to be sent to the SIP server.

Figure 18. Setting up call

Figure 19 shows the “CALLEE INFORMATION” window where again the name and
the domain have to be written. Now these two fields are information from the callee
so they are different than the ones inserted in the registration.

Figure 19. Callee information window

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 50

To follow the example, if the user queca wishes to call the user
“mary@pc64.tct.hut.fi” she would have to write:
� “NAME” = mary
� “DOMAIN” = pc64.tct.hut.fi

When the name and domain are written, the user has to press ENTER button on the
keyboard. The invitation is made after pressing “ESTABLISHING CALL”. If the
callee’s (Mary) line is not busy and she answers the call then they can start talking.
While they are talking, Jose (a new user) calls queca. At that moment, as queca is
registered for the ICW service, a “NEW CALL!!” window appears on her screen
(Figure 20). Thanks to that new window she does not miss Jose’s call if she wishes
so.

Figure 20. New incoming call window

In the “NEW CALL!!” window we have designed four different buttons:

� “ACCEPT”: selecting this button the user (queca) accepts the incoming call
(from Jose in the example case). She decides to finish the communication with
Mary and starts talking with Jose using the headphones on her PC.

� “REJECT”: selecting this button the user (queca) rejects the incoming call (from
Jose in the example case). Then Jose gets a message “BUSY” and he can try later
on.

� “FORWARD”: this program does not support this option. It consists in
forwarding the incoming call to a voicemail machine. The caller (Jose) can leave
a message if he wishes so.

� “EXIT”: this button is just to close the “NEW CALL!!” window.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 51

The messages transferred between the IPtele client and the SIP server in a situation
like the one presented above are depicted in the following control panel (Figure 21).
In this case, UserA is talking with UserB when UserC sends an INVITE request to
UserB. We consider that UserB was previously registered with the ICW service.
UserB can accept or reject User’sC invitation and messages involved in both cases
are included in the figure.

Figure 21. Control panel

7.2 The project structure

In the previous section we presented the Internet Call Waiting service (ICW) to give
a general idea of the aim of this project, the service. Now, in this section we describe
step by step all the relevant details and tools used to achieve our implementation.

Figure 22 helps to understand the structure of the project. Boxes in red represent the
modules developed in Helsinki University.

 Figure 22. Project organization chart

AN IM PLE M E N T AT ION OF T H E IN T E R N E T C ALL W AIT IN G S E R V IC E U S IN G S IP
Telecommun ication Technology department

Helsinki Un iversity of Technology (HUT)
Oct. 1998 - Dec. 1999

C PL su pp ort
exten s ion o f th e in it ia l cod e

S IP se rve r
from Columb ia Un iversity

(written in C)

In te rn e t C a ll W a itin g de fin ition
(u s in g X M L)

X M L p a rse r
libxml

(written in C)

U AC /U AS
(in J ava)

R TP s es s ion (J M F 2 .0)

USER A PROXY USER C

time

INVITE to B

USER B
accepts

IPtele (ICW):
USER B

CALL IN PROCESS

180 Ringing

INVITE

BYE

200 OK

200 OK

603 Busy

603 Busy

SESSION ESTABLISHED

USER B
rejects

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 52

7.2.1 MAIN LEGACY ITEMS

The main SIP page [2] was the initial point to start with before trying to develop
anything. Understanding the behavior of the protocol was essential to be able to work
on it. We also studied the Session Description Protocol [23] for media requirements.

The first “SIP Bake-off “ (New York, Apr. 1999) gave us the opportunity to contact
with other implementors and get the license for using the Columbia SIP server.
Installing the server in tele with the external libraries that it requires (clc, gdbm), was
not an easy task.

The next step was writing a JAVA program implementing the User Agent Client
(UAC) and the User Agent Server (UAS). The final JAVA code has around 2200
lines. At this point it was also necessary to study and analyze the Java Media
Framework Module (JMF 2.0) to insert an RTP session within the code.

This was in the client-server side. Jumping to the service we decided to use the Call
Processing Language (CPL) [34][[35] method to implement the service. For that
purpose we had to find a suitable parser (libxml) to be embedded in the SIP server to
manage the service. This part of the project also required learning XML to write the
document describing the Internet Call Waiting service. Installing and adding the
parser to the server (SIP server extension) was done very carefully to have all the
libraries well fixed. Figure 23 shows in red the extension of the Columbia University
SIP server. This figure can be compared with Figure 11 depicted in Chapter 5.

Figure 23. Software panel: CU-SIP server and HUT extension

As the SIP server was previously presented in chapter 5, we start introducing the
XML parser and the CPL method to follow with the JAVA program structure.

ReceiveUDP/ReceiveTCP locateuser in SIP
server database

Locate other contact for the same user LDAP server
(remote)

Aliases/Namemapper
(local)Process REQUEST/RESPONSES

Policy Handler

PROXY REDIRECT CGI CPL-HUT

sendrequest/sendresponse according to the policy

Read XML sript
from user

Registration

XML parser

Reg. Record User-XMLscript

CU-SIP server + HUT extension

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 53

7.2.2 THE XML PARSER AND THE CALL PROCESSING LANGUAGE

Nowadays, the popularity of XML has by far exceeded expectations and many books
[36], papers[39] and also free parsers for XML documents are publicly available
[41]. You can find parsers written in C, C++, JAVA, with modules in Tcl, Perl,
Python and so on. There are so many parsers available that it was a big deal to decide
the one we were going to use in our project [41].

As the SIP server code is totally written in C, it was better to choose an XML parser
also written in C. Studying all the possibilities (Expat, LT XML, etc.) we finally
decided to work with the XML Library called libxml built by Daniel Veillard [44].

Libxml is integrated in GNU Network Object Model Environment (GNOME) [46]
which is part of the GNU project of the Open Source Initiative (OSI) organization
[45].

Libxml understands the structure of XML Document Type Definitions (DTDs) [38]
and can validate documents against them. While developed and mainly used by its
author under Linux, it is a fairly portable library under different platforms. We have
used it under Sun Solaris system.

The concepts of valid and well-formed documents, and validating and non-validating
parsers are defined in the W3C recommendation XML 1.0. To clarify the concepts,
we briefly present the differences. For further information about XML you can go
back to chapter 6 or check the REC-xml-19980210 [38].

� Valid and well-formed XML files.

The DTD system is only one method of creating XML documents. As a result,
there are two types of XML document, those with DTDs and those without them.
Those with DTDs that conform to the SGML standard are called valid files.
Documents that exclude DTDs must be well formed; that is, they must conform
to a specific set of standards predefined. Valid files must be well formed too.

� Validating and non-validating parsers.

All XML parsers check to see if a document is well formed, but only validating
parsers check to see if a document is valid. It means that only validating parsers
can understand DTDs structures of data.

To invoke the parser the first thing to do is to read an XML document. The parser
accepts to parse both memory mapped documents or direct files. The functions are
defined in "parser.h":

� xmlDocPtr xmlParseMemory(char *buffer, int size);

parse a zero terminated string containing the document.

� xmlDocPtr xmlParseFile(const char *filename);

parse an XML document contained in a file.

This returns a pointer to the document element or NULL in case of failure.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 54

The way of traversing the tree to explore the complete XML document consists in
jumping from one node to the others using the xmlNodePtr. Depending on the branch
taken the final text output is different. There are multiple possibilities, following we
present some examples.

Document->root element->childs->childs

Document->root element ->childs->next->childs->childs

Document->root element->childs->next->next->childs

Functions to modify the tree are also available.

� xmlAttrPtr xmlSetProp(xmlNodePtr node, const xmlChar *name, const xmlChar
*value);

This function sets or changes an attribute carried by an element node.

� const xmlChar *xmlGetProp(xmlNodePtr node, const xmlChar *name);

This function returns a pointer to the property content.

Two functions are used to read and write the text associated with elements:

� xmlNodePtr xmlStringGetNodeList(xmlDocPtr doc, const xmlChar *value);

This function takes an "external" string and converts it to one text node or
possibly to a list of entity and text nodes. All non-predefined entity references
will be stored internally as an entity node; hence the result of the function may
not be a single node.

� xmlChar *xmlNodeListGetString(xmlDocPtr doc, xmlNodePtr list, int inLine);

This is the dual function, which generates a new string containing the content of
the text and entity nodes

The validation is still work in progress. Until a real validation interface is defined the
way to do it is to define and set the xmlDoValidityCheckingDefaultValue external
variable to 1.

To understand the parser behavior we analyze the tree out built by the parser. The
parser returns a tree built during the document analysis. The value returned is an
xmlDocPtr. This structure contains information like the file name, the document type,
and a root pointer, which is the root of the document (or more exactly the first child
under the root, which is the document). The tree is made of xmlNodes, chained in
double linked lists of siblings and with childs-parent relationship. An xmlNode can
also carry properties (a series of xmlAttr structures). An attribute may have a value,
which is a list of TEXT node.

The Call Processing Language (CPL) definition was introduced in chapter 6
including details of how to manage scripts and how to write CPL documents using
XML.

Now we present the application called hut-cpl based on the CPL [34][35].

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 55

Embedding the XML parser (libxml) in the SIP server code, we provide the server
XML document management and somehow service understanding.

The Internet Call Waiting is defined by the following structure (icw.xml), which will
be explored by the XML parser.

<?xml version="1.0"?>

<call Type="ICW">

 <proxy>

 <icw>

 <forward>

 <link ref="voicemail"/>

 </forward>

 <success>

 <location url="queca@pc2.tct.hut.fi"/>

 </success>

 <reject>The user is Busy now</reject>

 </icw>

 <busy/>

 <noanswer/>

 <failure/>

 </proxy>

 <response status="busy"/>

</call>

When the script is received in the SIP server, the XML parser translates all the
information about the user requirements to data structures. Those will be used to
perform the right decision when another request is coming.

Figure 24 depicts the steps followed by the parser to explore the icw.xml file.
Looking at the top of the structure, the pointer xmlDocPtr stores the memory address
where the xml script is deposited. The functions xmlParseFile and xmlParseMemory
return this pointer. From this point the parser starts analysing the script. The
xmlNodePtr guides to the memory addresses where the next nodes of the tree are
stored. The doc->root function gets the root node of the tree, in our case the <call>
tag. From the root, the parser can follow different branches according to the next and
childs functions. The latter goes down one level in the parents-children hierarchy.
Hence, from <call> the parser could take two possible childs nodes: <proxy> and
<response>. Following the same criteria, the <proxy> node presents four possible
childs branches (<icw>, <busy>, <noanswer> and <failure>) and, at the same time,
the <icw> has three childs more (<forward>, <success> and <reject>). The
structure continues like this with two childs more; < link> for <forward> and
<location> for <success>.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 56

Figure 24. A tree built by the XML parser

Furthermore, xmlGetProp() function gives the content of the each node property, e.g.
the content of TYPE in <call> would be "ICW". On the other hand,
xmlNodeGetString() function returns the attribute information between the same
node tags, e.g. in <reject> node would be The user is Busy now.

7.2.3 UAS/UAC

We implemented the User Agent Client (UAC) and the User Agent Server (UAS) in
JAVA [51].
The main program features are:
� handling windows and managing user actions.
� creating a window to act as an interface with the user, IPtele window.
� creating the SIP User Agent, SIP_UA myagent.

PARSER

xmlParseFile
xmlParseMemory

xmlDocPtr

<CALL>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

 content

XML FILE

doc root

xmlDoc
xmlNodePtr

<PROXY>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

TEXT: “ICW”

ATTRIBUTE: TYPE

xmlNodeGetString ()

<icw>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp ()
xmlAttr

xmlNodePtr

 childs

<RESPONSE>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

 conten t
TEXT: “busy”

ATTRIBUTE: status

xmlNodeGetString ()

<busy>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

<noanswer>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

<failure>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

 childs

<forward>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

<sucess>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

<reject>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

childs

<link>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

<location>

xmlNode childs
xmlNode next
xmlNode name
xmlGetProp()
xmlAttr

xmlNodePtr

childs childs

next next next

next

next next

 content

TEXT: “voicemail”

ATTRIBUTE: ref

xmlNodeGetString ()

 content
TEXT: “queca@pc2”

ATTRIBUTE: url

xmlNodeGetString ()

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 57

� Finally, giving the control to both modules (window, myagent).
To clarify its behavior Figure 25 depicts the main program diagram.

START
C reate M ain IP te le W indow

C reate S IP _U A (S erverD om a in= te le .hu t.fi)

C reate U A _s erver

U S E R A C TIO N

S electing
S ervice

A ccep ting
R egis tra tion

Inserting
C allee In fo

E stablish ing
C all

H ang ing up

N o

N o

N o

W A IT U S E R
A C TIO N

S et va riab les:
M yS tate=U N R E G IS TE R ED
S endSc rip t=fa lse
InviteS ent=string[50][20]
InviteR ec=s tring [50][20]
S es ionG oing=fa lse
seq i,seqr,seqa,seqb=0
C allID =M ath .random

S E R V E R W A IT IN G
Incom ing pac k

R egS erv ice=true
S erviceF ile="im ages/IC W .xm l"

Y es

 R egis tra tion
in fo is f illed

Y es

F ill user in fo
fo r

reg is tra tion

G et U ser in fo
S end R eg is tra tion to S IP
serve r
(R egS ervice,S erv ic eF ile)

Y es

S endSc rip t=R egS erv ic e
S crip tF ile=S erviceF ile
C allID = in it ila lization from construc tor
M yS tate=R E G IS TER IN G

Insert
R egis tra tion

in fo

N o

N o

create ToR egis te r c lass
w indow to get use r in fo

Y es

create ToR egis te r c lass
w indow to get ca lle in fo

Y es

S esionG oing=fa lse
c lose C aptureS ende r c lass(R T P

S ession)
Y es

E XIT

N o

E N D

Y es

N o

U ser
reg is tered

already
Y es

C alle in fo
is ready

Y es

N o
M ust R egis ter

before

F ill
C allee

in fo
N o

G et C allee in fo
S end (IN V ITE) to S IP s erver

C allID = in it ia l
M yS tate=IN V IT IN G

Y es

C allee
in fo

N o

R eg.
in fo

Figure 25. Main program diagram

The SIP_UA created by the main program presents four modules:

� User Agent Client (UAC) module.

This class is invoked when the SIP_UA is created. The UAC constructor
initializes all the variables for incoming/outgoing messages and the sockets
needed for the communication. This class also implements different methods to
send requests and responses on behalf user actions and upon variable values or
status.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 58

Three modules are created inside the UAC: the UAS (FormPack), the send()
function and the CaptureSender() class.

The UAS is created through an independent thread to handle all the incoming
messages. Thus, the UAS runs in standalone process only to be aware of any
incoming packet. Here FormPack function is initialized to create the messages
according to the SIP syntax. FormPack requires a well-formed SIP packet and
the SDP declaration message based on user resources [23]. Following, the code
lines for the INVITE method and the consequent INVITE request are included as
examples [4]. (An SDP fields overview is included in chapter 4).

public String FormPack (String Type){

.............

if (Type=="invite"){

info = new StringBuffer(" INVITE
sip:"+callee+"@"+DestDomain+" SIP/2.0\n");

Via =new String("Via: SIP/2.0/UDP
"+myhostaddress+":5060\n");

From=new String("From:
sip:"+myname+"@"+mydomain+"\n");

To=new String("To:
sip:"+callee+"@"+DestDomain+"\n");

CallID=new String("Call-ID:
"+Callid+"@"+mydomain+"\n");

seqi++;

CSeq=new String("CSeq: "+seqi+" INVITE\n");

Contact =new String("Contact:
<sip:"+myname+"@"+mydomain+":5060;transport=udp>\n"
);

ContentType =new String("Content-Type:
application/sdp\n");

/* SDP DESCRIPTION */

StringBuffer sdpinfo= new StringBuffer(" v=0\n");

String o=new String(" o="+myname+" 2890844526
2890842807 IN IP4 "+myhostaddress+"\n");

String s=new String(" s=ICW SIP\n");

String i=new String(" i =A Session for voice
transmission using SIP\n");

String e=new
String(" e="+callee+"@"+DestDomain+"\n");

String p=new String(" p=+358 9 4514785 \n");

String c=new String(" c=IN IP4
"+myhostaddress+"\n");

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 59

String t=new String(" t =0 0\n");

String m=new String(" m=audio 50250 RTP/AVP 0\n");

String a=new String(" a=rtpmap:0 PCMU/8000\n\n");

sdpinfo.append(o).append(s).append(i).append(e).app
end(p).append(c).append(t).append(m).append(a);

String sdpto=sdpinfo.toString();

ContentLength =new String("Content-Length:
"+sdpto.length()+"\n\n");
info.append(Via).append(From).append(To).append(Cal
lID).append(CSeq).append(Contact).append(ContentTyp
e).append(ContentLength).append(sdpto);
}

Resulting, for example, the following INVITE request:

INVITE sip:queca@pc2.tct.hut.fi SIP/2.0
Via : SIP/2.0/UDP 130.233.154.64:5060
From: sip:jose@pc64.tct.hut.fi
To: sip:queca@pc2.tct.hut.fi
Call-ID : 3062@pc64.tct.hut.fi
CSeq: 1 INVITE
Contact :<sip:jose@pc64.tct.hut.fi:5060;transpo
rt=udp>
Content-Type : application/sdp
Content-Length : 227

v=0
o=jose 2890844526 2890842807 IN IP4
130.233.154.64
s=ICW SIP
i =A Session for voice transmission using SIP
e=queca@pc2.tct.hut.fi
p=+358 9 4514785
c=IN IP4 130.233.154.64
t =0 0
m=audio 50250 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The send() function is created in the UAC constructor and is used to establish a
link with the SIP server for sending the packets.

The last module is the CaptureSender() class. After the message transactions a
call is established and thereafter the UAC initializes this class. This function is
based on JAVA JMF 2.0 module and its responsibility is helping the RTP
module to establish an RTP session for media transmission [51][24].

� User Agent Server (UAS) module.

This class waits for incoming packets from the SIP server and also invokes the
parser to manage the scripts.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 60

Figure 26 shows the UAS diagram.

 RESPONSE

UAS WAITING
Incoming pack

Yes

Packet from
SIP server

Set variables:
MyState=UNREGISTERED
PackRec=string[50][20]
PackToUse=string[50][20]
ByeSent=string[50][20]
InviteSent=string[50][20]
InviteOn=string[50][20]
InviteRec=string[50][20]
seqi,seqr,seqa,seqb=0

Parse Packet

PackRec=defrag(message)

Yes
Response
>200 <400

Response
>= 400 <=500No

Notification:
Feature not
supported

No

Notification:
ERROR
message

Yes

Response=200 Yes MyState=REGISTERING

MyState=REGISTERED

Yes

NoResponse=100Response=180
Response

>=600<700
NoNo

Output
Window:

Busy

Output
Window:
Server
Ringing

Output
Window:
Server

Trying to
contact

YesYesYes

MyState=INVITING

No

MyState=SENDINGBYE No

PackToUse=InviteSent
InviteOn=InviteSent
MyState=INVITED

MyState=REGISTERED

Yes

send ACK
open RTP session
SessionGoing=true

BYENoCANCELACKINVITE NoNo

YesYes

Yes

Yes

No

REGISTERNo

Notification:
Feature not

possible

Yes

InviteRec=PackRec

MyState=INVITED

SessionCancelled

SessionGoing=true

Yes

MyState=REGISTERED ||
MyState==INVITED

SessionGoing=true
Create RTP

Manager

Yes

PackToUse=PackRec
Close RTP Manager

Yes

send 200

No

No

Notification:
Who is calling

PackToUse=PackRec
Send 180

Yes

User decision to
manage the call

ACCEPTREJECT No Yes

PackToUse=InviteRec
Send: 603 "Decline"

Yes

SessionGoing=true PackToUse=PackRec
InviteOn=InviteRec
MyState=INVITED

Send: 200 OK

No

PackToUse=InviteOn
Close RTP Manager

Send: "BYE"

Yes

No

No

No

Figure 26. UAS module

� SIP parse module.

This class is created at the UAC initialization. Its structure includes SIP messages
syntax to be able to strip out the incoming messages sent by the UAS. It also sets
the environment variables properly for posterior UA action.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 61

� Real Time Protocol (RTP) module.

This module is implemented using JAVA JMF 2.0. To establish the RTP session,
it captures the participant IP addresses sent by the UAC and the media type
required according to the SDP declaration included in the messages [24].

After the initial SIP message transactions, this module creates a media session
between the two addresses previously captured. The media requirements are read
from the environment variables filled from the SDP packets received.

Finally, when the call is established this module is re-called. Afterwards, the
voice is taken from the microphone and sent through this session to the remote
user. This function is also aware of the RTP incoming packets carrying the voice
to be played running the users’ sound card.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 62

Chapter 8

Conclusions and future work

IP telephony is becoming the new leader in the telephony world. Day by day the
number of companies interested in IP telephony is continuously increasing and new
attractive services are in progress. Users demand new facilities and services that must
be provided by the companies using the best tools to achieve their objectives.

Over the last few months, the Internet Call Waiting service is becoming increasingly
popular. The service (implementated by Nortel networks) is already available in
some areas of the United States but it uses the H.323 protocol for signaling instead of
the Session Initiation Protocol (SIP). Currently, we do not know about any other
implementation of ICW using the Call Processing Language (CPL) and SIP. We
believe that our implementation is the first one of its characteristics and we are very
proud of working in such a hot telecommunications sector.

The development of this project has been hard but at the same time quite interesting.
Different knowledge was required to achieve our goals like C programming, JAVA,
XML, and protocols behavior in general. Building the implementation required
writing quite a lot of Java code but also of lecturing and consulting.

The project started at the end of November 1998. Thus, it has taken around one year
to be completed, including the writing of this document that has not been an easy
task. Most of the project time was spent on learning new tools, and writing the JAVA
program that creates the SIP client (UAC/UAS). Furthermore, the XML gave us work
in the sense that it is a very new language and there is information about it but
sometimes the information is confusing and incomplete.

Today, the Internet Call Waiting is the only service that Iptele program supports.
Anyway, defining new services is quite easy using the payload of SIP REGISTER
messages, and their responses as the media to transport the scripts to registration
servers alongside the user's registration. The end user would be the one who decides
which kind of service he/she would like to have. Therewith, writing a new XML file

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 63

defining the service and with a few extensions in the JAVA program different new
services would be also supported by Iptele and managed by the SIP server.

Something can always be left for future time. In our case new features can be
supported by the IPtele but also the SIP server can have new extensions to manage
the possible incoming future services. Actually, the SIP server from Columbia
University is a programmable proxy, redirect and registrar server. To achieve new
features maybe different headers or responses could be generated.

Defining the service can be done using different languages and structures. As it is
explained in chapter 6, we use XML for writing the service files. Right now there are
too many options for describing the data, but in the future there will be even more.
People study new fashionable languages to find the easiest and more understandable
way to describe the data. New syntax, new schemes, new tools, and new preferences
are always appearing and developers must choose the best one according to users’
demands.

By now nearly everyone in the software industry is aware of the whirlwind of
attention being focused on XML. There can be little doubt that XML has garnered its
fair share of attention from the press and seen a lot of action at this year's conferences
and trade shows. But the question remains: Can XML make it possible to create new
systems for data management and organization without many of the incompatibilities
and complexities that plagued older systems?

The XML specification itself is a technical, complex document that lays out the form
of XML in minute detail but does little to shed light on its practical potential. Truly,
XML is important because it represents an open, standards-based language and
allows developers to go their own ways on markup elements. It is an established
syntax with freely available parsers and is easy to parse and write for both humans
and computers. In fact, XML can be part of many imaginative scenarios involving
business-to-business interaction, application integration, and so on, in which XML
plays the role of the trusty supporting actor: acting as the universal data format for
heterogeneous applications, databases, and legacy systems.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 64

References

SIP and related articles
[1] M. Handley, H. Schulzrinne, E. Schooler and J. Rosenberg, “SIP: Session

Initiation Protocol,” Request for Comments 2543, Internet Engineering Task
Force, Mar. 1999.

[2] H. Schulzrinne, “Session Initiation Protocol,” online <URL:
http://www.cs.columbia. edu/~hgs/sip/>.

[3] J. Lennox and H. Schulzrinne, “Transporting User Control Information in
SIP REGISTER Payloads,” Internet Draft, Internet Engineering Task Force,
Feb. 1999. Work in progress.

[4] J. Rosenberg, J. Lennox and H. Schulzrinne, “Programming Internet
Telephony Services,” IEEE Internet Computing Magazine, May/Jun. 1999.

[5] J. Rosenberg and H. Schulzrinne, “The Session Initiation Protocol: Providing
Advanced Telephony Services across the Internet,” Bell Labs Technical
Journal, Vol. 3, No. 4, Oct/Dec. 1998, pp. 144-160.

[6] E. Wedlund and H. Schulzrinne, “Mobility support using SIP,” Second
ACM/IEEE International Conference on Wireless and Mobile Multimedia
(WoWMoM'99), Aug. 1999, Seattle, Washington.

[7] J. Lennox, H. Schulzrinne and T. La Porta, “Implementing Intelligent
Network Services with the Session Initiation Protocol,” Columbia University
Computer Science Technical Report CUCS-002-99, Jan. 1999.

[8] J. Lennox, J. Rosenberg and H. Schulzrinne, “Common Gateway Interface
for SIP,” Internet Draft, Internet Engineering Task Force, May 1999. Work
in progress.

[9] A. Johnston, S. Donovan, R. Sparks, C. Cunningham and K. Summers, “SIP
Telephony Call Flow Examples,” Internet draft, Internet Engineering Task
Force, Oct.1999. Work in progress.

[10] R. Sparks, C. Cunningham, A. Johnston, S. Donovan and K. Summers, “SIP
Telephony Service Examples With Call Flows,” Internet draft, Internet
Engineering Task Force, Oct. 1999. Work in progress.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 65

[11] J. Rosenberg and I. Slepchin, “Siphone: a Session Initiation Protocol GUI
based user agent,” online <URL: http://www.bell-labs.com/project/sip/>.

[12] J. Pulver, “Notes from Fall '99 Voice on the Net”, online <URL:
http://www.pulver.com/reports/> Atlanta, Georgia, Sep. 1999.

[13] S. Breidenbach, “Got the urge to converge? ” Network World, online <URL:
http://www.nwfusion.com/buzz99/buzzcon.html>, Sep. 1999.

[14] D. Willis “The Future is SIP”, Network Computing, online <URL:
http://www.networkcomputing.com/1019/1019colwillis.html>, Sep. 1999.

 [15] V. Vittore, “SIP gains momentum,” Telephony, p.14, Aug. 23, 1999.

[16] G. Camarillo, “IP Telephony Gateways,” Master Thesis, Ericsson Telecom
AB, Department of Teleinformatics, KTH, Nov. 1998.

[17] H. Schulzrinne, “SIP: more than grandma’s phone calls,” Voice On the Net
conference (VON), Jun. 1999.

H.323 vs SIP
[18] International Telecommunication Union, H.323 recommendation, online

<URL: http://www.itu.int/itudoc/itu-t/rec/h/h323.html>

[19] I. Dalgic and H. Fang, “Comparison of H.323 and SIP for IP Telephony
Signaling,” Photonics East, Proceeding of SPIE’99, Boston, Massachusetts,
Sep.1999.

[20] H. Schulzrinne and J. Rosenberg, “A Comparison of SIP and H.323 for
Internet Telephony,” proceedings of the 1998 Workshop on Network and
Operating System Support for Digital Audio and Video (NOSSDAV'98), Jul.
1998, Cambridge, England.

[21] L. De Carmo, “Internet Telephony Protocols: H.323 vs. SIP,” Dr. Dobbs
Journal, Jul. 1999.

[22] N. Beijar, “Signaling protocols for Internet Telephony. Architectures based
on H.323 and SIP,” Department of Electrical and Communications
Engineering, Helsinki University of Technology, Espoo, Finland, Oct. 1998.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 66

Other protocols
 [23] M. Handley and V. Jacobson, “SDP: Session Description Protocol,” Request

for Comments 2327, Internet Engineering Task Force, Apr. 1998.

[24] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” Request for Comments 1889, Internet
Engineering Task Force, Jan. 1996.

[25] H. Schulzrinne, R. Lanphier and A. Rao, “RTSP: Real Time Streaming
Protocol,” Request for Comments 2326, Internet Engineering Task Force,
Apr. 1998.

[26] M. Handley, C. Perkins and E. Whelan, “Session Announcement Protocol,”
online <URL: http://www.ietf.org/internet-drafts/draft-ietf-mmusic-sap-v2-
03.txt>, Internet Engineering Task Force, Oct. 1999. Work in progress.

 [27] J. Rosenberg and H. Schulzrinne, “The IETF Internet Telephony
Architecture and Protocols,” IEEE Network, vol. 13, pp. 18-23, May/Jun.
1999.

[28] The Internet Engineering Task Force, online <URL: http://www.ietf.org/>.

[29] Index of Requests For Comments (RFC’s), Internet Engineering Task Force,
online <URL: http://www.ietf.org/rfc.html/>.

[30] Multiparty Multimedia Session Control (MMUSIC), online <URL:
http://www.ietf.org/html.charters/mmusic-charter.html>.

[31] D. Mills, “Network Time Protocol (version 3) specification and
implementation", Request For Comments 1305, Mar. 1992.

[32] M. Wahl, T. Howes and S. Kille, “Lightweight Directory Access Protocol
(v3),” Request For Comments 2251, Dec. 1997.

[33] D. Raggett, A. L. Hors, and I. Jacobs, “HTML 4.0 specification,” online
<URL: http://www.w3.org/TR/REC-html40/> , Apr. 1998

CPL
[34] J. Lennox and H. Schulzrinne, “Call Processing Language Framework and

Requirements,” Internet Draft, Internet Engineering Task Force, Oct. 1999.
Work in progress.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 67

[35] J. Lennox and H. Schulzrinne, “CPL: a language for user control of Internet
telephony services,” Internet Draft, Internet Engineering Task Force, Mar.
1999. Work in progress.

XML
 [36] M. Leventhal, D. Lewis and M. Fuchs, Designing XML applications, The

definitive XML series from Charles F. Goldfarb.

[37] “XML-RPC Home Page,” online <URL: http://www.xml-rpc.com/>,
UserLand Software Inc., 1999.

[38] “Extensible Markup Language (XML) 1.0,” online <URL:
http://www.w3.org/TR/ REC-xml>, W3C Recommendation 10 Feb.1998.

[39] R. Cover, “The SGML / XML Web Page,” online <URL: http://www.oasis-
open.org/cover/sgml-xml.html>, Sep. 1999.

[40] XML Resource Guide - XML Parsers, online <URL:
http://www.xml.com/xml/pub/Guide/XML_Parsers>

[41] Free XML software, online <URL:
http://www.stud.ifi.uio.no/~lmariusg/linker/XMLtools.html#SC_XML>

[42] Working with XML, online <URL:
http://java.sun.com/xml/docs/tutorial/overview/index.html>

[43] N. Walsh, “A Technical Introduction to XML,” online <URL:
http://xml.com/xml/pub/98/10/guide0.html>

[44] D. Veillard, “The XML library for GNOME,” online <URL:
http://rufus.w3.org/veillard/XML/xml.html>

[45] The Open Source Initiative (OSI), online <URL:
http://www.opensource.org/>

[46] GNU Network Object Model Environment (GNOME), online <URL:
http://www.gnome.org/>

UML
[47] UML 1.1 Standard, online <URL: http://www.rational.com>

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 68

[48] M. Fowler and K. Scott, “UML distilled, applying the standard modeling
language,” Addison-Wesley, 1997.

Others
[49] T. Berners-Lee, R. Fielding and L. Masinter, "Uniform resource identifiers

(URI): generic syntax", RFC 2396, August 1998.

[50] CLC library from Columbia University, online
<ftp://ftp.cs.columbia.edu/pub/sos/lib/>

[51] The JAVA tutorial, online <URL: http://java.sun.com/docs/books/tutorial/ >.

[52] J. Kuthan, “Internet Telephony - An Overview,” online <URL:
http://www.fokus.gmd.de/research/cc/glone/projects/ipt/abstract.html>.

[53] The Common Gateway Interface, online <URL:
http://hoohoo.ncsa.uiuc.edu/cgi/>.

[54] Answers for IT professionals, online <URL: http://www.inquiry.com>

[55] Scripting News, online <URL: http://www.scripting.com/>.

[56] GNU Project web server, online <URL: http://www.gnu.org>.

[57] Helsinki University of Technology, online <URL: http://www.hut.fi/>.

[58] Columbia University, online <URL: http://www.cs.columbia.edu/>.

[59] T. Laakso, “How to write a diploma Thesis,” Department of Electrical and
Communications Engineering, Helsinki University of Technology, Espoo,
1999.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 69

Annex A
A complex example

This example shows the sort of sophisticated behavior, which can be achieved by
combining CPL nodes. In this case, the user attempts to have his calls reach his desk;
if he does not answer within a small amount of time, calls from his boss are
forwarded to his celphone, and all other calls are directed to voicemail [35]

<?xml version="1.0" ?>
 <!DOCTYPE call SYSTEM "cpl.dtd">

 <call>
 <location url="sip:jones@phone.example.com">
 <proxy timeout="8s">
 <busy>
 <location url="sip:jones@voicemail.example.com" merge="clear">
 <redirect />
 </location>
 </busy>
 <noanswer>
 <string-switch field="from">
 <string matches="boss@*example.com">
 <location url="phone:+19175551212" merge="clear">
 <proxy />
 </location>
 </string>
 <otherwise>
 <location url="sip:jones@voicemail.example.com" merge="clear">
 <redirect />
 </location>
 </otherwise>
 </string-switch>
 </noanswer>
 </proxy>
 </location>
 </call>

cpl.dtd file

XML documents may, and should, begin with an XML declaration that specifies the
version of XML being used. Next, Entity declarations allow you to associate a name
with some other fragment of content. There are three kinds of entities: internal
entities, external entities and parameter entities. Parameter entities can only occur in
the DTD. A parameter entity declaration is identified by placing % (percent-space) in
front of its name in the declaration. Parameter entities are not recognized in the body
of a document [38].

Element type declarations identify the names of elements and the nature of their
content while attribute list declarations, identify which elements may have attributes,
what attributes they may have, what values the attributes may hold, and what value is
the default.

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 70

 <?xml version="1.0" encoding="US-ASCII" ?>

 <!-- Define types of nodes -->
 <!-- Switch nodes -->

 <!ENTITY % Switch 'string-switch|time-switch' >

 <!-- Location nodes -->

 <!ENTITY % Location 'location|lookup' >

 <!-- Signalling action nodes -->

 <!ENTITY % SignallingAction 'proxy|redirect|response' >

 <!-- Other actions -->

 <!ENTITY % OtherAction 'notify|log' >

<!-- Nodes are one of the above four categories, or a link. This entity (macro)
describes the contents of an output. -->

 <!ENTITY % Node '%Location;|%Switch;|%SignallingAction;|
 %OtherAction;|link' >

<!-- Nodes can have link IDs. Since this is an attribute of every node, we need to
define it early. -->

 <!ENTITY % Link-ID 'id ID #IMPLIED'>

 <!-- Switches: choices a CPL script can make. -->
 <!-- All switches contain an 'otherwise' node. -->

 <!ELEMENT otherwise (%Node;) >

 <!-- String-switch makes choices based on strings. -->

 <!ELEMENT string-switch (string+, otherwise?) >
 <!ATTLIST string-switch
 field CDATA #REQUIRED
 %Link-ID;
 >

 <!ELEMENT string (%Node;) >
 <!ATTLIST string
 is CDATA #IMPLIED
 contains CDATA #IMPLIED
 matches CDATA #IMPLIED
 comparator CDATA "i;ascii-casemap"
 >

 <!-- Time-switch makes choices based on the current time. -->

 <!ELEMENT time-switch (time+, otherwise?) >

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 71

 <!ATTLIST time-switch
 %Link-ID;
 >

 <!ELEMENT time (%Node;) >
 <!ATTLIST time
 year CDATA #IMPLIED
 month CDATA #IMPLIED
 date CDATA #IMPLIED
 day CDATA #IMPLIED
 timeofday CDATA #IMPLIED
 >

<!-- Locations: ways to specify the location a subsequent action (proxy, redirect)
will attempt to contact. -->

 <!ENTITY % Merge 'merge (merge|clear) "merge"' >

 <!ELEMENT location (%Node;) >
 <!ATTLIST location
 url CDATA #REQUIRED
 %Merge;
 %Link-ID;
 >

 <!-- Sources of location lookups that aren't URIs. -->

 <!ENTITY % Sources '(registration)' >

 <!ELEMENT lookup (success,notfound?,failure?) >
 <!ATTLIST lookup
 url CDATA #IMPLIED
 source %Sources; #IMPLIED
 timeout CDATA #IMPLIED
 %Merge;
 %Link-ID;
 >

 <!ELEMENT success (%Node;) >
 <!ELEMENT notfound (%Node;) >
 <!ELEMENT failure (%Node;) >

 <!-- Signalling Actions: call-signalling actions the script can
 take. -->

 <!ELEMENT proxy (busy?,noanswer?,failure?) >
 <!ATTLIST proxy
 timeout CDATA #IMPLIED
 %Link-ID;
 >

 <!ELEMENT busy (%Node;) >
 <!ELEMENT noanswer (%Node;) >
 <!-- "failure" repeats from lookup above. XXX? -->

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 72

 <!ELEMENT redirect EMPTY >

 <!ATTLIST redirect
 %Link-ID;
 >

 <!-- Statuses we can return -->

 <!ELEMENT response EMPTY >
 <!ATTLIST response
 status CDATA #REQUIRED
 reason CDATA #IMPLIED
 %Link-ID;
 >

 <!-- Non-signalling actions: actions that don't affect the call -->

 <!ELEMENT notify (success,failure?) >
 <!ATTLIST notify
 url CDATA #REQUIRED
 comment CDATA #IMPLIED
 %Link-ID;
 >

 <!ELEMENT log (success,failure?) >
 <!ATTLIST log
 name CDATA #IMPLIED
 comment CDATA #IMPLIED
 %Link-ID;
 >
 <!-- Links to other nodes. -->

 <!ELEMENT link EMPTY >
 <!ATTLIST link
 ref IDREF #REQUIRED
 >

 <!-- The top-level element of the script. -->

 <!ELEMENT call (%Node;) >

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 73

Third SIP Bake off

ENVIRONMENT and AGENDA
Regarding the network lab data:
Default router: 63.86.21.1
Netmask: 255.255.255.0
DNS server: 63.86.21.2
DNS domain: ericy.com

The hostnames in DNS were sip-stat???.ericy.com and the dynamic (DHCP) address
range started at 63.86.21.180. The hostnames were sip-dyn???.ericy.com

SIP Bake off information is CONFIDENTIAL, for that reason we have omitted the
name of the companies involved in our testing results.

� Monday, December 6th

Equipment Setup.
Basic Interoperability Testing.
People installed their equipment and started with some basic signaling messages. We
spent all day installing the SIP server in the Solaris workstation and the Iptele
program plus the JAVA package in the two PCs borrowed from Ericsson.

� Tuesday, December 7th

Basic Interoperability testing.
After a couple of hours we solved a problem with the libraries required by the SIP
server and finally, we also started the testing. Next, we present some of the messages
registered.

Company1-HUT testing.

Company1 sent us an INVITE:

...
INVITE sip:queca@63.86.21.120 SIP/2.0
Via: SIP/2.0/UDP 63.86.21.63:5060
To: sip:queca@63.86.21.120
From: sip:company1@63.86.21.63
Call-ID: 1086034694@63.86.21.63
CSeq: 1 INVITE

TESTING RESULTS
December 6-8, 1999

Richardson, Texas (USA)

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 74

Content-Type: application/sdp
...

We sent back a 200 OK response accepting the invitation.

200 sip:queca@63.86.21.120 SIP/2.0
Via: SIP/2.0/UDP 63.86.21.63:5060
To: sip:queca@63.86.21.120
From: sip:company1@63.86.21.63
Call-ID: 1086034694@63.86.21.63
CSeq: 1 INVITE
Content-Length: 350
Content-Type: application/sdp

The user, queca@helsinkiu.ericy.com, sent a REGISTER request to the SIP
server from the IPtele program. The request included the Internet Call Waiting
service XML file.

REGISTER sip:ericy.com SIP/2.0
Via: SIP/2.0/UDP 63.86.21.120:5060
From: sip:queca@helsinkiu.ericy.com
To: sip:queca@helsinkiu.ericy.com
Call-ID: 6088@helsinkiu.ericy.com
Cseq: 1 REGISTER
Contact:<sip:queca@helsinkiu.ericy.com:5060;transport=udp
>
Expires: 7200
Content-Length: 350
Content-Type: application/hut-cpl

<?xml version="1.0"?>
<call Type="ICW">

 <proxy>
 <icw>
 <forward>
 <link ref="voicemail"/>
 </forward>
 <success>
 <location url="queca@pc2.tct.hut.fi"/>
 </success>
 <reject>The user is Busy now</reject>
 </icw>
 <busy/>
 <noanswer/>
 <failure/>
 </proxy>
 <response status="busy"/>

</call>

The SIP server accepted the registration and sent back a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 63.86.21.120:5060
From: sip:queca@helsinkiu.ericy.com
To: sip:queca@helsinkiu.ericy.com
Call-ID: 6088@helsinkiu.ericy.com
Cseq: 1 REGISTER
Date: Wed, 07 Dec 1999 16:49:10 GMT

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 75

Server: Columbia-SIP-Server/1.0
Content-Length: 350
Contact:sip:queca@helsinkiu.ericy.com:5060;transport=udp;
expires="Wed, 07 Dec 1999 17:49:10 GMT"; action=proxy;
q=0.00
Expires: Wed, 07 Dec 1999 17:49:10 GMT
Content-Type: application/hut-cpl

<?xml version="1.0"?>
<call Type="ICW">

 <proxy>
 <icw>
 <forward>
 <link ref="voicemail"/>
 </forward>
 <success>
 <location url="queca@pc2.tct.hut.fi"/>
 </success>
 <reject>The user is Busy now</reject>
 </icw>
 <busy/>
 <noanswer/>
 <failure/>
 </proxy>
 <response status="busy"/>

</call>

Company2 - HUT testing.

Company2 sent us an INVITE and we accepted :

INVITE sip:queca@63.86.21.120 SIP/2.0
Via: SIP/2.0/UDP sip-stat128
From:Nicolas<sip:nico@sip-stat128>
To:<sip:queca@sip-stat120.ericy.com>
Call-ID: 4e4a6acac4c3404d@sip-stat128
CSeq: 1 INVITE
Content-Length: 0
User-Agent: Company2 User Agent V0.9
Subject:
Priority: non-urgent

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP sip-stat128
From:Nicolas<sip:nico@sip-stat128>
To: <sip:queca@sip-stat120.ericy.com>
Call-ID: 4e4a6acac4c3404d@sip-stat128
CSeq: 1 INVITE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP sip-stat128
From:Nicolas<sip:nico@sip-stat128>
To: <sip:queca@sip-stat120.ericy.com>
Call-ID: 4e4a6acac4c3404d@sip-stat128
CSeq: 1 INVITE
Contact:
<sip:queca@helsinkiu.ericy.com:5060;transport=udp>
Content-Type:application/sdp

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 76

Content-Length: 213

v=0
o=queca 2890844526 2890842807 IN IP4 63.86.21.120
s=ICW SIP
i=A Session for voice transmission using SIP
e= queca@63.86.21.120
p=+358 9 4514785
c=IN IP4 63.86.21.120
t=0 0
m=audio 50250 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Afterwards Company2 sent us another INVITE and we rejected the call.

INVITE sip:queca@63.86.21.120 SIP/2.0
Via: SIP/2.0/UDP sip-stat128
From:Nicolas<sip:nico@sip-stat128>
To: <sip:queca@sip-stat120.ericy.com>
Call-ID: 4e4a6acac4c3404f@sip-stat128
CSeq: 1 INVITE
Content-Length: 0
User-Agent: Company2 User Agent V0.9
Subject:
Priority: non-urgent

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP sip-stat128
From:Nicolas<sip:nico@sip-stat128>
To: <sip:queca@sip-stat120.ericy.com>
Call-ID: 4e4a6acac4c3404f@sip-stat128
CSeq: 1 INVITE
Content-Length: 0

SIP/2.0 603 Decline
Via: SIP/2.0/UDP sip-stat128
From:Nicolas<sip:nico@sipstat-128>
To: <sip:queca@sip-stat120.ericy.com>
Call-ID: 4e4a6acac4c3404f@sip-stat128
CSeq: 1 INVITE
Content-Length: 0

Company3- HUT testing.

We sent an INVITE to Company3 and they accepted the call. The session was
established but we could not talk due to a JAVA exception (new version of JMF 2.0)
that we could not solve during the SIP Bake off.

INVITE sip:063@63.86.21.63 SIP/2.0
Via: SIP/2.0/UDP 63.86.21.120:5060
From: sip:queca@helsinkiu.ericy.com
To: sip:063@63.86.21.63
Call-ID: 1258@helsinkiu.ericy.com
CSeq: 1 INVITE
Contact:
<sip:queca@helsinkiu.ericy.com:5060;transport=udp>
Content-Type: application/sdp
Content-Length: 218

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 77

v=0
o=queca 2890844526 2890842807 IN IP4 63.86.21.120
s=ICW SIP
i=A Session for voice transmission using SIP
e=063@63.86.21.63
p=+358 9 4514785
c=IN IP4 63.86.21.120
t=0 0
m=audio 50250 RTP/AVP 0
a=rtpmap:0 PCMU/8000

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 63.86.21.120:5060
To: sip:063@63.86.21.63
From: sip:queca@helsinkiu.ericy.com
Call-ID: 1258@helsinkiu.ericy.com
CSeq: 1 INVITE
Content-Length: 218
Content-Type: application/sdp

v=0
o=RAIDer 9912080204 9912080204 IN IP4 63.86.21.63
s=Company3
p=+1 972 642 1000
c=IN IP4 63.86.21.63
t=0 0
a=ptime:60
m=audio 49152 RTP/AVP 0
a=rtpmap:0 pcmu/8000/1

SIP/2.0 100 Trying
Via: SIP/2.0/UDP 63.86.21.120:5060
To: sip:063@63.86.21.63
From: sip:queca@helsinkiu.ericy.com
Call-ID: 1258@helsinkiu.ericy.com
CSeq: 2 INVITE
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP 63.86.21.120:5060
To: sip:063@63.86.21.63
From: sip:queca@helsinkiu.ericy.com
Call-ID: 1258@helsinkiu.ericy.com
CSeq: 3 INVITE
Contact: sip:company3@63.86.21.120

ACK sip:063@63.86.21.63 SIP/2.0
Via: SIP/2.0/UDP 63.86.21.120:5060
From: sip:queca@helsinkiu.ericy.com
To: sip:063@63.86.21.63
Call-ID: 1258@helsinkiu.ericy.com
CSeq: 1 ACK
Content-Length: 0
…
BYE sip:queca@helsinkiu.ericy.com:5060 SIP/2.0
Via: SIP/2.0/UDP 63.86.21.63:5060
To: sip:queca@helsinkiu.ericy.com

 Helsinki University of Technology An Implementation of the Internet Call Waiting Service using SIP

Inmaculada Espigares del Pozo 78

From: sip:063@63.86.21.63
Call-ID: 1258@helsinkiu.ericy.com
CSeq: 4 BYE
Content-Length: 0

� Wednesday, December 8th

Advanced interoperability testing, complex network setup.

We sent a REGISTER to the SIP server form IPtele but we did not get back a 200
response. When one of the companies sent us an INVITE, the server did not
recognize the user and sent back a 404 Not Found response.

...
INVITE sip:063@63.86.21.63 SIP/2.0
Via: SIP/2.0/UDP 63.86.21.120:5060
From: sip:pepe@helsinkiu.ericy.com
To: sip:queca@non-esoe.ericy.com
Call-ID: 7130@helsinkiu.ericy.com
Cseq: 2 INVITE
Date: Wed, 08 Dec 1999 18:21:13 GMT
Server: Columbia-SIP-Server/1.0
Content-Length: 0

SIP/2.0 100 Trying
Via: SIP/2.0/UDP 63.86.21.120:5060
From: sip:pepe@helsinkiu.ericy.com
To: sip:queca@non-esoe.ericy.com
Call-ID: 7130@helsinkiu.ericy.com
Cseq: 2 INVITE
Date: Wed, 08 Dec 1999 18:21:13 GMT
Server: Columbia-SIP-Server/1.0
Content-Length: 0

SIP/2.0 404 Not Found
Via: SIP/2.0/UDP 63.86.21.120:5060
From: sip:pepe@helsinkiu.ericy.com
To: sip:queca@non-esoe.ericy.com
Call-ID: 7130@helsinkiu.ericy.com
Cseq: 2 INVITE
Date: Wed, 08 Dec 1999 18:21:13 GMT
Server: Columbia-SIP-Server/1.0
Content-Length: 0

