DHT algorithm based on encoding Table 1: Representation of theasfunction for 16-point DHT
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A novel algorithm for computing the discrete Hartley transform - 3
(DHT) is presented. The proposed algorithm is based on th 2cas(4-7/16) 4 0 2 0 0
algebraic integers encoding scheme. With the aid of this schemeg, 2ca{6-7/16) 0 -2 0 1 0

an error-free representation of tbas function becomes possible.
Furthermore, for the implementation of the algorithm a fully
pipelined systolic architecture with(N) throughput is proposed. Systolic array implementationilthough fast Hartley transform
) . . . (FHT) requires less computation, however, similar to the FFT, in
Introduction The discrete Hartley transform (DHT) is an attractive 5 4er to support perfect shuffling between different stages the FHT
alternative to the discrete Fourier transform (DFT) because of it?equires global communication. On the other hand, the DHT enjoys
real-valued computation and properties similar to those of the DFmpje communication and is much more suitable for VLSI systolic
[1]. Another interesting property of the DHT is that the same,qays. For the implementation of the proposed DHT algorithm, a
kernel is used for both the transform and its inverse transformfu”y pipelined systolic architecture is presented. The proposed

Conseq_ugntly,_ since its intr_oductioq th(_a DHT has found its way tosystolic array enjoys the advantages of simplicity, modularity,
many digital signal processing applications [2]. The 1-D DHT of regularity, and locality.

N-point sequencex, n = 0,...,N1 andN = 2} is defined as: Fig. 1 illustrates the case whehe = 16. In Fig. 2, the cell
N-1 kn function of each Processor Element (PE) is presented. In&gEL,
X = ancas(ZﬁW) » OsksN-1 (1) {i=l,...,0 andO< j< N-1} correspond to the coefficients in Table 1
" and they are stored in the local registers. Note that indiex;
where cad = co®) + sind. corresponds to the position of tHePE1 columnj = I,...,0, where

Since the introduction of the DHT, a number of systolic | is the degree of the polynomial of eqn. 5.
architectures have been proposed, many of which are based on thé Fig. 1, the input data is first pipelined into the array of PEls
direct implementation of algorithm [3,4]. In these implementationsthrough an output-buffered demultiplexer. The pipelined data
for the calculation of thecas function, different types of should then be multiplied bg;. However, it is easy to see that the
approximations have been introduced. Processing with algebraiggquired multiplication can be replaced with only one shift
integers, in which the signal sample is represented by a set of smalperation (Table 1). In PE1, tisaifty (x,) operation means thaj,
integers, was introduced in [5]. Algebraic integers are roots ofis shiftedonce and the type of shift is determineday This can
monic polynomials that have integer coefficients with leadingbe implemented with a shifter such as a barrel shifter.
coefficient equal to unity. The motivation for introducing this new Up to this point, for the computation of the DHT algorithm, we
mapping of real numbers is to drastically reduce the dynamic rangBave utilized an error-free format. However, the accuracy of the
of each of the independent computations. In this letter, we illustratéinal reconstruction depends on the precision used to represent
how with the aid of the algebraic integers scheme, an efficientl herefore, one can estimate the precision that is needed to insure
error-free systolic implementation of DHT can be obtained. the required accuracy. As an example, if the word-length of data
stream is 8-bit, thert=2-2"-27is a very good approximation
Algebraic-integer interpretationConsider the 16-point DHT. The of z For the final reconstruction, by utilizing the Horner’s rule,
kernel of this transformation isas(2knz/16) whereO< k, n < N-1. eqn. 5 can be rewritten as:

The classical method for calculating tlmas function is to f(2)=((a;z+a,)z+a,)z+a, (6)
approximate the function in binary number system, which leads to

rounding off errors. In this paper, we adopt the algebraic integers For the implementation of eqn. 6, a simple linear array consisting
encoding scheme. Consider the first nonzero angle ofctéise of PE2 and PE3 processors is utilized.

function that is27/16. We can represent tlw@sandsin functions 0

0
of this angle as: 0

coS(27/16) = 2+ 42 /2 o) ]
sin@r/16) = \2— 42 /2 ©)

The other needed angles can be represented in a similar manner. Xz X |
Now without compromising the calculations, we omit the “2” from
the denominator of egns. 2 and 3. Denotilg as

z2=2c0sQRr/16) =+/2+ \/E , Wherezis a root of egn. 4.
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Consider now the polynomial of egn. 5:
Fig. 1 Systolic implementation of the 16-point DHT algorithm
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whereg, are integers. By assigning (0,1,0,0)atave have arexact Xin—p] —»Xout Your  Xin + Yout
codefor z, and thus,2(cos2z/16) . Proceeding in the same manner
as in [6], we can obtain aerror-free representation of theas l

Sout
out € Xin You < (Xin + yin) "2 You € Xin T Yin
«S,+ shiftau (x,)

function necessary to evaluate the 16-point 1-D DHT. Table 1
presents the corresponding coefficients of every required angle.
Other remaining angles can be obtained by changing the signs of s,
the given coefficients.

X
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Fig. 2 Input-output ports of the PEs and their cell functions



Hardware and throughput consideration:The proposed
architecture requiredl(l + 1) PE1s,| PE2s and one PE3. For
evaluation of the throughput, we first assume that one time step of
the global clock corresponds to one operation in PE2. For the
computation of the first set of 1-D DHT N2+ |) time steps are
required. The successive sets are computed in an intenidl of
steps. Therefor&(N) time complexity is achieved.

In the proposed method, onlymultipliers are required. On the
other hand, in [3N CORDICs and in [4N multipliers are needed.
Table 2 illustrates the performance comparison of various systolic
implementations of 1-D DHT. From Table 1 it is obvious that 7/16
of operations in PE1s are actually simple data transfer operations
Sout < Sin- In order to further reduce the complexity, the proposed
method can be combined widlmy other DHT algorithms.

Table 2: Comparison of various systolic arrays for 1-D DHT

Multiplications Additiong Total Number of multipliers or CORDICs

Proposed| Direct[3]| Proposed Chang & Lege[3] Pan & Park [4]
8| 8M 72A|128M 64A 1 8 8
16|48M 496A12M 256A 4 16 16

For an error-free implementation, &t gets largerl becomes
larger as well. However, by utilizing different approximation
techniques we can get a very good estimate otdlsdéunction as
can be seen from Table 3. As an example, the vector (3,-12,10,2) is
a good approximation @ay27/32) with an error of 0.000012.

Table 3: Approximation of cas(@/32) for 32-point DHT

4-bit dynamic range 6-bit dynamic range
k | a|a|as Error a | a1 | a| as Error
0,8 2/ 0] 0] 0 0 2| 0] 0ol O 0
1,7 41 41 -4 2] 0.000281 3 -12 1p 2 0.000012
2,6 0|-2], 0] 1 0 0| -2l 0o 1 0
35 -7 3| -8] 5| 0.001291 -20 -118 -15 17 0.000003
4 41 0[] 2] 0 0 4, 0] 2| O 0
9,45 | -1| 6| 4| 0| 0.00109 5 -8 -17 11 0.0000p8
10,14| 0| 4] 0| 1 0 0| -4 0 1 0
11,13| -7| -7| 6| 0] 0.000831 -25 17 26 -15 0.000003
12 0| 0j0] O 0 0] 0] 0 O 0

Conclusions In this letter, we proposed a novel approach that is
aimed at efficient implementation of the DHT algorithm. One of
the advantages of the proposed algorithm is aror-free
implementation of the DHT computation up until the final
reconstruction. The proposed method can be combinedanith
DHT algorithms to achieve further hardware reduction. Finally, for
the implementation of the algorithm, a fully pipelined systolic
architecture witfO(N) throughput is proposed.
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