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A novel algorithm for computing the discrete Hartley transform
(DHT) is presented. The proposed algorithm is based on the
algebraic integers encoding scheme. With the aid of this scheme,
an error-free representation of the cas function becomes possible.
Furthermore, for the implementation of the algorithm a fully
pipelined systolic architecture with O(N) throughput is proposed.

Introduction: The discrete Hartley transform (DHT) is an attractive
alternative to the discrete Fourier transform (DFT) because of its
real-valued computation and properties similar to those of the DFT
[1]. Another interesting property of the DHT is that the same
kernel is used for both the transform and its inverse transform.
Consequently, since its introduction the DHT has found its way to
many digital signal processing applications [2]. The 1-D DHT of a
N-point sequence {xn, n = 0,…,N-1 and N = 2m} is defined as:
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where cas� = cos� + sin�.
Since the introduction of the DHT, a number of systolic

architectures have been proposed, many of which are based on the
direct implementation of algorithm [3,4]. In these implementations
for the calculation of the cas function, different types of
approximations have been introduced. Processing with algebraic
integers, in which the signal sample is represented by a set of small
integers, was introduced in [5]. Algebraic integers are roots of
monic polynomials that have integer coefficients with leading
coefficient equal to unity. The motivation for introducing this new
mapping of real numbers is to drastically reduce the dynamic range
of each of the independent computations. In this letter, we illustrate
how with the aid of the algebraic integers scheme, an efficient
error-free systolic implementation of DHT can be obtained.

Algebraic-integer interpretation: Consider the 16-point DHT. The
kernel of this transformation is )162(cas �kn where 0� k, n � N-1.

The classical method for calculating the cas function is to
approximate the function in binary number system, which leads to
rounding off errors. In this paper, we adopt the algebraic integers
encoding scheme. Consider the first nonzero angle of the cas
function that is 162� . We can represent the cos and sin functions

of this angle as:

222)162(cos ��� (2)

222)162sin( ��� (3)

The other needed angles can be represented in a similar manner.
Now without compromising the calculations, we omit the “2” from
the denominator of eqns. 2 and 3. Denoting z as

22)162cos(2 ��� �z , where z is a root of eqn. 4.
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Consider now the polynomial of eqn. 5:
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where ai are integers. By assigning (0,1,0,0) to ai we have an exact
code for z, and thus, )162(cos2 � . Proceeding in the same manner

as in [6], we can obtain an error-free representation of the cas
function necessary to evaluate the 16-point 1-D DHT. Table 1
presents the corresponding coefficients of every required angle.
Other remaining angles can be obtained by changing the signs of
the given coefficients.

Table 1: Representation of the cas function for 16-point DHT

a0 a1 a2 a3 Error

)160(cas2 �� 2 0 0 0 0

)162(cas2 �� 0 -2 0 1 0

)164(cas2 �� -4 0 2 0 0

)166(cas2 �� 0 -2 0 1 0

Systolic array implementation: Although fast Hartley transform
(FHT) requires less computation, however, similar to the FFT, in
order to support perfect shuffling between different stages the FHT
requires global communication. On the other hand, the DHT enjoys
simple communication and is much more suitable for VLSI systolic
arrays. For the implementation of the proposed DHT algorithm, a
fully pipelined systolic architecture is presented. The proposed
systolic array enjoys the advantages of simplicity, modularity,
regularity, and locality.

Fig. 1 illustrates the case where N = 16. In Fig. 2, the cell
function of each Processor Element (PE) is presented. In PE1, aij

{ i=I,…,0 and 0� j� N-1} correspond to the coefficients in Table 1
and they are stored in the local registers. Note that index i in aij

corresponds to the position of the i th PE1 column, i = I,…,0, where
I is the degree of the polynomial of eqn. 5.

In Fig. 1, the input data is first pipelined into the array of PE1s
through an output-buffered demultiplexer. The pipelined data xin

should then be multiplied by aij. However, it is easy to see that the
required multiplication can be replaced with only one shift
operation (Table 1). In PE1, the shiftaij (xin) operation means that xin

is shifted once and the type of shift is determined by aij. This can
be implemented with a shifter such as a barrel shifter.

Up to this point, for the computation of the DHT algorithm, we
have utilized an error-free format. However, the accuracy of the
final reconstruction depends on the precision used to represent z.
Therefore, one can estimate the precision that is needed to insure
the required accuracy. As an example, if the word-length of data
stream is 8-bit, then 75 222ˆ ��

���z is a very good approximation
of z. For the final reconstruction, by utilizing the Horner’s rule,
eqn. 5 can be rewritten as:

0123 ))(()( azazazazf ���� (6)

For the implementation of eqn. 6, a simple linear array consisting
of PE2 and PE3 processors is utilized.
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Fig. 1 Systolic implementation of the 16-point DHT algorithm
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Fig. 2 Input-output ports of the PEs and their cell functions



Hardware and throughput consideration: The proposed
architecture requires N(I + 1) PE1s, I PE2s and one PE3. For
evaluation of the throughput, we first assume that one time step of
the global clock corresponds to one operation in PE2. For the
computation of the first set of 1-D DHT (2N + I) time steps are
required. The successive sets are computed in an interval of N
steps. Therefore, O(N) time complexity is achieved.

In the proposed method, only I multipliers are required. On the
other hand, in [3] N CORDICs and in [4] N multipliers are needed.
Table 2 illustrates the performance comparison of various systolic
implementations of 1-D DHT. From Table 1 it is obvious that 7/16
of operations in PE1s are actually simple data transfer operations
sout � sin. In order to further reduce the complexity, the proposed
method can be combined with any other DHT algorithms.

Table 2: Comparison of various systolic arrays for 1-D DHT

Multiplications Additions Total Number of multipliers or CORDICs
N Proposed Direct [3] Proposed Chang & Lee[3] Pan & Park [4]

8   8 M    72 A 128 M   64 A 1 8 8

16 48 M  496 A 512 M 256 A 4 16 16

For an error-free implementation, as N gets larger I becomes
larger as well. However, by utilizing different approximation
techniques we can get a very good estimate of the cas function as
can be seen from Table 3. As an example, the vector (3,-12,10,2) is
a good approximation of )322(cas � with an error of  0.000012.

Table 3: Approximation of cas(2�k/32) for 32-point DHT

4-bit dynamic range 6-bit dynamic range
k a0 a1 a2 a3 Error a0 a1 a2 a3 Error

0,8 2 0 0 0 0 2 0 0 0 0
1,7 -4 4 -4 2 0.000281 3 -12 10 2 0.000012
2,6 0 -2 0 1 0 0 -2 0 1 0
3,5 -7 3 -8 5 0.001291 -20 -18 -15 17 0.000003
4 -4 0 2 0 0 -4 0 2 0 0

9,15 -1 -6 4 0 0.001090 5 -8 -17 11 0.000008
10,14 0 -4 0 1 0 0 -4 0 1 0
11,13 -7 -7 6 0 0.000831 -25 17 26 -15 0.000003

12 0 0 0 0 0 0 0 0 0 0

Conclusions: In this letter, we proposed a novel approach that is
aimed at efficient implementation of the DHT algorithm. One of
the advantages of the proposed algorithm is an error-free
implementation of the DHT computation up until the final
reconstruction. The proposed method can be combined with any
DHT algorithms to achieve further hardware reduction. Finally, for
the implementation of the algorithm, a fully pipelined systolic
architecture with O(N) throughput is proposed.
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